9 resultados para information systems planning
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Other Audit Reports - 28E Organizations
Resumo:
Iowa’s Rail Environment Iowa’s rail transportation system provides both freight and passenger service. Rail serves a variety of trips, including those within Iowa and those to other states as well as to foreign markets. While rail competes with other modes, it also cooperates with those modes to provide intermodal services to Iowans. In 2009 Iowa’s rail transportation system could be described as follows: Freight Iowa’s 130,000-mile freight transportation system includes an extensive railroad network, a well-developed highway system, two bordering navigable waterways, and a pipeline network as well as air cargo facilities. While rail accounts for only 3 percent of the freight network, it carries 43 percent of Iowa’s freight tonnage. A great variety of commodities ranging from fresh fish to textiles to optical products are moved by rail. However, most of the Iowa rail shipments consist of bulk commodities, including grain, grain products, coal, ethanol, and fertilizers. The railroad network performs an important role in moving bulk commodities produced and consumed in the state to local processors, livestock feeders, river terminals and ports for foreign export. The railroad’s ability to haul large volumes, long distances at low costs will continue to be a major factor in moving freight and improving the economy of Iowa. Key 2008 Facts • 3,945 miles of track • 18 railroads • 49.5 million tons shipped • 39.7 million tons received • 2 Amtrak routes • 6 Amtrak stations • 66,286 rail passenger rides Key Rail Trends • slightly fewer miles being operated; • railroads serving Iowa has remained the same; • more rail freight traffic; • more tons hauled per car; • higher average rail rates per ton-mile since 2002; • more car and tons hauled per locomotive; and • more ton miles per gallon of fuel consumed. Iowa’s rail system and service has been evolving over time relative to its size, financial conditions, and competition from other modes.
Resumo:
This is the final report of the of IowAccess Project 8, which designed and implemented a geospatial data infrastructure for Iowa, including a formalized coordination body, a coordination staff, and enhanced data clearing house, and a statewide GIS training and education effort.
Resumo:
Report on a special investigation of the University of Iowa Hospitals and Clinics, Health Care Information Systems Department, for the period January 1, 2005 through July 5, 2013
Resumo:
This project was proposed as Phase I of a 2-phase program to evaluate the present use of weather information by Iowa Department of Transportation (IaDOT) personnel, recommend revised procedures, and then implement the resulting recommendations. Midway through Phase I (evaluation phase) the FORETELL project was funded. This project is a multi-state venture that engages the National Weather Service (NWS) and the Forecast Systems Laboratory of the National Oceanic and Atmospheric Administration and proposes to supplant the current weather information-generation and distribution system with an advanced system based on state-of-the-art technologies. The focus of the present project was therefore refined to consider use of weather data by IaDOT personnel, and the training programs needed to more effectively use these data. Results of the survey revealed that two major areas - training of personnel on use of data from whatever source and more precise information of frost formation - are not addressed in the FORETELL project. These aspects have been the focus of the present project.
Resumo:
Report on a special investigation of the Cerro Gordo County Management Information Systems (MIS) Department for the period January 1, 2008 through July 31, 2013
Resumo:
Transportation planners typically use census data or small sample surveys to help estimate work trips in metropolitan areas. Census data are cheap to use but are only collected every 10 years and may not provide the answers that a planner is seeking. On the other hand, small sample survey data are fresh but can be very expensive to collect. This project involved using database and geographic information systems (GIS) technology to relate several administrative data sources that are not usually employed by transportation planners. These data sources included data collected by state agencies for unemployment insurance purposes and for drivers licensing. Together, these data sources could allow better estimates of the following information for a metropolitan area or planning region: · Locations of employers (work sites); · Locations of employees; · Travel flows between employees’ homes and their work locations. The required new employment database was created for a large, multi-county region in central Iowa. When evaluated against the estimates of a metropolitan planning organization, the new database did allow for a one to four percent improvement in estimates over the traditional approach. While this does not sound highly significant, the approach using improved employment data to synthesize home-based work (HBW) trip tables was particularly beneficial in improving estimated traffic on high-capacity routes. These are precisely the routes that transportation planners are most interested in modeling accurately. Therefore, the concept of using improved employment data for transportation planning was considered valuable and worthy of follow-up research.
Resumo:
Winter maintenance, particularly snow removal and the stress of snow removal materials on public structures, is an enormous budgetary burden on municipalities and nongovernmental maintenance organizations in cold climates. Lately, geospatial technologies such as remote sensing, geographic information systems (GIS), and decision support tools are roviding a valuable tool for planning snow removal operations. A few researchers recently used geospatial technologies to develop winter maintenance tools. However, most of these winter maintenance tools, while having the potential to address some of these information needs, are not typically placed in the hands of planners and other interested stakeholders. Most tools are not constructed with a nontechnical user in mind and lack an easyto-use, easily understood interface. A major goal of this project was to implement a web-based Winter Maintenance Decision Support System (WMDSS) that enhances the capacity of stakeholders (city/county planners, resource managers, transportation personnel, citizens, and policy makers) to evaluate different procedures for managing snow removal assets optimally. This was accomplished by integrating geospatial analytical techniques (GIS and remote sensing), the existing snow removal asset management system, and webbased spatial decision support systems. The web-based system was implemented using the ESRI ArcIMS ActiveX Connector and related web technologies, such as Active Server Pages, JavaScript, HTML, and XML. The expert knowledge on snow removal procedures is gathered and integrated into the system in the form of encoded business rules using Visual Rule Studio. The system developed not only manages the resources but also provides expert advice to assist complex decision making, such as routing, optimal resource allocation, and monitoring live weather information. This system was developed in collaboration with Black Hawk County, IA, the city of Columbia, MO, and the Iowa Department of transportation. This product was also demonstrated for these agencies to improve the usability and applicability of the system.
Resumo:
Stream channel erosion in the deep loess soils region of western Iowa causes severe damage along hundreds of miles of streams in twenty-two counties. The goal of this project was to develop information, systems, and procedures for use in making resource allocation decisions related to the protection of transportation facilities and farmland from damages caused by stream channel erosion. Section one of this report provides an introduction. Section two presents an assessment of stream channel conditions from aerial and field reconnaissance conducted in 1993 and 1994 and a classification of the streams based on a six stage model of stream channel evolution. A Geographic Information System is discussed that has been developed to store and analyze data on the stream conditions and affected infrastructure and assist in the planning of stabilization measures. Section three presents an evaluation of two methods for predicting the extent of channel degradation. Section four presents an estimate of costs associated with damages from stream channel erosion since the time of channelization until 1992. Damage to highway bridges represent the highest costs associated with channel erosion, followed by railroad bridges and right-of-way; loss of agricultural land represents the third highest cost. An estimate of costs associated with future channel erosion on western Iowa streams is also presented in section four. Section four also presents a procedure to estimate the benefits and costs of implementing stream stabilization measures. The final section of this report, section five, presents information on the development of the organizational structure and administrative procedures which are being used to plan, coordinate, and implement stream stabilization projects and programs in western Iowa.