231 resultados para highway infrastructure

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhanced system performance, improved safety against natural hazards and vibrations, and a reduction in life cycle cost in both operating and maintaining the infrastructure. Advancements in MEMS technology and wireless sensor networks provide opportunities for long-term continuous, real-time structural health monitoring of pavements and bridges at low cost within the context of sustainable infrastructure systems. The primary objective of this research was to investigate the use of MEMS in highway structures for health monitoring purposes. This study focused on investigating the use of MEMS and their potential applications in concrete through a comprehensive literature review, a vendor survey, and a laboratory study, as well as a small-scale field study. Based on the comprehensive literature review and vendor survey, the latest information available on off-the-shelf MEMS devices, as well as research prototypes, for bridge, pavement, and traffic applications were synthesized. A commercially-available wireless concrete monitoring system based on radio-frequency identification (RFID) technology and off-the-shelf temperature and humidity sensors were tested under controlled laboratory and field conditions. The test results validated the ability of the RFID wireless concrete monitoring system in accurately measuring the temperature both inside the laboratory and in the field under severe weather conditions. In consultation with the project technical advisory committee (TAC), the most relevant MEMS-based transportation infrastructure research applications to explore in the future were also highlighted and summarized.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Utilizing enhanced visualization in transportation planning and design gained popularity in the last decade. This work aimed at demonstrating the concept of utilizing a highly immersive, virtual reality simulation engine for creating dynamic, interactive, full-scale, three-dimensional (3D) models of highway infrastructure. For this project, the highway infrastructure element chosen was a two-way, stop-controlled intersection (TWSCI). VirtuTrace, a virtual reality simulation engine developed by the principal investigator, was used to construct the dynamic 3D model of the TWSCI. The model was implemented in C6, which is Iowa State University’s Cave Automatic Virtual Environment (CAVE). Representatives from the Institute of Transportation at Iowa State University, as well as representatives from the Iowa Department of Transportation, experienced the simulated TWSCI. The two teams identified verbally the significant potential that the approach introduces for the application of next-generation simulated environments to road design and safety evaluation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the introduction of expanded levels of intrastate service on October 30, 2006, Amtrak trains in Illinois have produced impressive gains in both ridership and ticket revenue. This success and continuing stakeholder support has given rise to a formal request from the Illinois Department of Transportation (“Ill. DOT”) to Amtrak to develop a feasibility study regarding possible service consisting of a morning and an evening train in each direction between Chicago and the Quad Cities. The area between Chicago and the Quad Cities includes many rapidly growing communities. From Chicago toward the West and South, many towns and cities have experienced double digit growth increases in population since the year 2000. Southern DuPage, Cook and Will counties have seen especially strong growth, pressuring highway infrastructure, utilities, and schools. Community development and highway congestion are readily apparent when traveling the nearly 3 hour, 175 mile route between Chicago and the Quad Cities. As information, there are only three weekday round trip bus frequencies available between Chicago and the Quad Cities. The Quad City International Airport offers a total of 10 daily scheduled round trip flights to Chicago's O'Hare International Airport via two separate carriers flying regional jets. The Quad Cities (Davenport, Moline, Rock Island, and Bettendorf) are located along the Mississippi River. Nearly 60% of its visitors are from the Chicago area. With dozens of miles of scenic riverfront, river boating, casinos, and thousands of acres of expansive public spaces, the Quad Cities area is a major draw from both Iowa and Illinois. The huge Rock Island Arsenal, one of the largest military arsenals in the country and located along the river, is transitioning to become the headquarters of the United States First Army. As will be discussed later in the report, there is only one logical rail route through the Quad Cities themselves. The Iowa Interstate Railroad operates through the Quad Cities along the river and heads west through Iowa. The Quad Cities are considering at least three potential locations for an Amtrak station. A study now underway supported by several local stakeholders will recommend a site which will then be considered, given available local and other financial support. If Amtrak service were to terminate in the Quad Cities, an overnight storage track of sufficient length along with ample parking and certain other requirements covered elsewhere in the report would be required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. Characterization of slope failures is complicated, because the factors affecting slope stability can be difficult to discern and measure, particularly soil shear strength parameters. While in the past extensive research has been conducted on slope stability investigations and analysis, this research consists of field investigations addressing both the characterization and reinforcement of such slope failures. The current research focuses on applying an infrequently-used testing technique comprised of the Borehole Shear Test (BST). This in-situ test rapidly provides effective (i.e., drained) shear strength parameter values of soil. Using the BST device, fifteen Iowa slopes (fourteen failures and one proposed slope) were investigated and documented. Particular attention was paid to highly weathered shale and glacial till soil deposits, which have both been associated with slope failures in the southern Iowa drift region. Conventional laboratory tests including direct shear tests, triaxial compression tests, and ring shear tests were also performed on undisturbed and reconstituted soil samples to supplement BST results. The shear strength measurements were incorporated into complete evaluations of slope stability using both limit equilibrium and probabilistic analyses. The research methods and findings of these investigations are summarized in Volume 1 of this report. Research details of the independent characterization and reinforcement investigations are provided in Volumes 2 and 3, respectively. Combined, the field investigations offer guidance on identifying the factors that affect slope stability at a particular location and also on designing slope reinforcement using pile elements for cases where remedial measures are necessary. The research findings are expected to benefit civil and geotechnical engineers of government transportation agencies, consultants, and contractors dealing with slope stability, slope remediation, and geotechnical testing in Iowa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. While in the past extensive research has been conducted on slope stability investigations and analysis, this current research study consists of field investigations addressing both the characterization and reinforcement of such slope failures. While Volume I summarizes the research methods and findings of this study, Volume II provides procedural details for incorporating an infrequently-used testing technique, borehole shear tests, into practice. Fifteen slopes along Iowa highways were investigated, including thirteen slides (failed slopes), one unfailed slope, and one proposed embankment slope (the Sugar Creek Project). The slopes are mainly comprised of either clay shale or glacial till, and are generally gentle and of small scale, with slope angle ranging from 11 deg to 23 deg and height ranging from 6 to 23 m. Extensive field investigations and laboratory tests were performed for each slope. Field investigations included survey of slope geometry, borehole drilling, soil sampling, in-situ Borehole Shear Testing (BST) and ground water table measurement. Laboratory investigations mainly comprised of ring shear tests, soil basic property tests (grain size analysis and Atterberg limits test), mineralogy analyses, soil classifications, and natural water contents and density measurements on the representative soil samples from each slope. Extensive direct shear tests and a few triaxial compression tests and unconfined compression tests were also performed on undisturbed soil samples for the Sugar Creek Project. Based on the results of field and lab investigations, slope stability analysis was performed on each of the slopes to determine the possible factors resulting in the slope failures or to evaluate the potential slope instabilities using limit equilibrium methods. Deterministic slope analyses were performed for all the slopes. Probabilistic slope analysis and sensitivity study were also performed for the slope of the Sugar Creek Project. Results indicate that while the in-situ test rapidly provides effective shear strength parameters of soils, some training may be required for effective and appropriate use of the BST. Also, it is primarily intended to test cohesive soils and can produce erroneous results in gravelly soils. Additionally, the quality of boreholes affects test results, and disturbance to borehole walls should be minimized before test performance. A final limitation of widespread borehole shear testing may be its limited availability, as only about four to six test devices are currently being used in Iowa. Based on the data gathered in the field testing, reinforcement investigations are continued in Volume III.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. Volume I of this current study summarizes research methods and findings, while Volume II provides procedural details for incorporating into practice an infrequently-used testing technique–borehole shear tests. Volume III of this study of field investigation of fifteen slopes in Iowa demonstrates through further experimental testing how lateral forces develop along stabilizing piles to resist slope movements. Results establish the feasibility of an alternative stabilization approach utilizing small-diameter pile elements. Also, a step-by-step procedure that can be used by both state and county transportation agencies to design slope reinforcement using slender piles is documented. Initial evidence of the efficiency and cost-effectiveness of stabilizing nuisance slope failures with grouted micropiles is presented. Employment of the remediation alternative is deemed more appropriate for stabilizing shallow slope failures. Overall, work accomplished in this research study included completing a comprehensive literature review on the state of the knowledge of slope stability and slope stabilization, the preparation and performance of fourteen full-scale pile load tests, the analysis of load test results, and the documentation of a design methodology for implementing the technology into current practices of slope stabilization. Recommendations for further research include monitoring pilot studies of slope reinforcement with grouted micropiles, supplementary experimental studies, and advanced numerical studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this project was to determine the feasibility of using pavement condition data collected for the Iowa Pavement Management Program (IPMP) as input to the Iowa Quadrennial Need Study. The need study, conducted by the Iowa Department of Transportation (Iowa DOT) every four years, currently uses manually collected highway infrastructure condition data (roughness, rutting, cracking, etc.). Because of the Iowa DOT's 10-year data collection cycles, condition data for a given highway segment may be up to 10 years old. In some cases, the need study process has resulted in wide fluctuations in funding allocated to individual Iowa counties from one study to the next. This volatility in funding levels makes it difficult for county engineers to plan and program road maintenance and improvements. One possible remedy is to input more current and less subjective infrastructure condition data. The IPMP was initially developed to satisfy the Intermodal Surface Transportation Efficiency Act (ISTEA) requirement that federal-aid-eligible highways be managed through a pavement management system. Currently all metropolitan planning organizations (MPOs) in Iowa and 15 of Iowa's 18 RPAs participate in the IPMP. The core of this program is a statewide data base of pavement condition and construction history information. The pavement data are collected by machine in two-year cycles. Using pilot areas, researchers examined the implications of using the automated data collected for the IPMP as input to the need study computer program, HWYNEEDS. The results show that using the IPMP automated data in HWYNEEDS is feasible and beneficial, resulting in less volatility in the level of total need between successive quadrennial need studies. In other words, the more current the data, the smaller the shift in total need.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The corrosion of steel reinforcement in an aging highway infrastructure is a major problem currently facing the transportation engineering community. In the United States alone, maintenance and replacement costs for deficient bridges are measured in billions of dollars. The application of corrosion-resistant steel reinforcement as an alternative reinforcement to existing mild steel reinforced concrete bridge decks has potential to mitigate corrosion problems, due to the fundamental properties associated with the materials. To investigate corrosion prevention through the use of corrosion-resistant alloys, the performance of corrosion resistance of MMFX microcomposite steel reinforcement, a high-strength, high-chromium steel reinforcement, was evaluated. The study consisted of both field and laboratory components conducted at the Iowa State University Bridge Engineering Center to determine whether MMFX reinforcement provides superior corrosion resistance to epoxy-coated mild steel reinforcement in bridge decks. Because definitive field evidence of the corrosion resistance of MMFX reinforcement may require several years of monitoring, strict attention was given to investigating reinforcement under accelerated conditions in the laboratory, based on typical ASTM and Rapid Macrocell accelerated corrosion tests. After 40 weeks of laboratory testing, the ASTM ACT corrosion potentials indicate that corrosion had not initiated for either MMFX or the as-delivered epoxy-coated reinforcement. Conversely, uncoated mild steel specimens underwent corrosion within the fifth week, while epoxy-coated reinforcement specimens with induced holidays underwent corrosion between 15 and 30 weeks. Within the fifth week of testing, the Rapid Macrocell ACT produced corrosion risk potentials that indicate active corrosion for all reinforcement types tested. While the limited results from the 40 weeks of laboratory testing may not constitute a prediction of life expectancy and life-cycle cost, a procedure is presented herein to determine life expectancy and associated life-cycle costs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A good system of preventive bridge maintenance enhances the ability of engineers to manage and monitor bridge conditions, and take proper action at the right time. Traditionally infrastructure inspection is performed via infrequent periodical visual inspection in the field. Wireless sensor technology provides an alternative cost-effective approach for constant monitoring of infrastructures. Scientific data-acquisition systems make reliable structural measurements, even in inaccessible and harsh environments by using wireless sensors. With advances in sensor technology and availability of low cost integrated circuits, a wireless monitoring sensor network has been considered to be the new generation technology for structural health monitoring. The main goal of this project was to implement a wireless sensor network for monitoring the behavior and integrity of highway bridges. At the core of the system is a low-cost, low power wireless strain sensor node whose hardware design is optimized for structural monitoring applications. The key components of the systems are the control unit, sensors, software and communication capability. The extensive information developed for each of these areas has been used to design the system. The performance and reliability of the proposed wireless monitoring system is validated on a 34 feet span composite beam in slab bridge in Black Hawk County, Iowa. The micro strain data is successfully extracted from output-only response collected by the wireless monitoring system. The energy efficiency of the system was investigated to estimate the battery lifetime of the wireless sensor nodes. This report also documents system design, the method used for data acquisition, and system validation and field testing. Recommendations on further implementation of wireless sensor networks for long term monitoring are provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Future plans for funding for Iowa Department of Transportation Report

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual report for Iowa Department of Transportation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major objective of this problem identification document is the determination of the relative severity of traffic safety problems in each of the 99 counties. The National Highway Traffic Safety Administration and the Iowa Governor's Traffic Safety Bureau are committed to the reduction of death and injury on the nation's roads. As part of its duty in administering federal traffic safety funds in the State of Iowa, the Governor's Traffic Safety Bureau conducts a comprehensive Problem Identification update each year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual highway safety plan for Iowa Department of Public Safety

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Annual Highway Safety Report for Iowa Department of Public Safety.