87 resultados para germination speed index
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Iowa Department of Transportation has been using the Bureau of Public Roads (BPR) Roughometer as part of its detour analysis process for more than 20 years. Advances in technology have made the BPR Roughometer obsolete for ride quality testing. High-speed profilers that can collect the profile of the road at highway speeds are the standard ride instruments for determining ride quality on pavements. The objective of the project was to develop a correlation between the BPR Roughometer and the high-speed laser South Dakota type Profiler (SD Profiler). Nineteen pavement sections were chosen to represent the range of types and conditions for detours. Three computer simulation models were tested on the profiler profiles. The first model is the International Ride Index (IRI) which is considered the standard index for reporting ride quality in the United States. The second model is the Ride Number (RN) developed by the University of Michigan Transportation Research Institute and the third model used is a quarter-car simulation of the BPR Roughometer (ASTM E-1170) which should match the speed and range of roadway features experienced by Iowa's BPR Roughometer Unit. The BPR Roughometer quarter-car model provided the best overall correlation with Iowa's BPR Roughometer.
Resumo:
Report for the Iowa Utilities Board and the Iowa Department of Economic Development
Resumo:
Report for Iowa Utilities Board
Resumo:
Report for the Iowa Utilities Board.
Resumo:
Investigative report produced by Iowa Citizens' Aide/Ombudsman
Resumo:
The primary objective of the Fourth Assessment is to evaluate the level of progress in the deployment of high-speed Internet technologies in the State of Iowa.
Resumo:
Pavement profile or smoothness has been identified nationally as a good measure of highway user satisfaction. This has led highway engineers to measure profiles of both operating and new highways. Operational highway profiles are often measured with high-speed inertial profilers. New highway profiles are usually measured with profilographs in order to establish incentives or disincentives for pavement construction. In most cases, these two processes do not measure the same value from the “cradle to grave” life of pavements. In an attempt to correct the inconsistency between measuring techniques, lightweight profilers intended to produce values to be used for construction acceptance are being made that measure the same profile as high-speed inertial profilers. Currently, two profiler systems have been identified that can measure pavement profile during construction. This research has produced a field evaluation of the two systems. The profilers evaluated in this study are able to detect roughness in the final profile, including localized roughness and roughness at joints. Dowel basket ripple is a significant source of pavement surface roughness. The profilers evaluated in this study are able to detect dowel basket ripple with enough clarity to warn the paving crew. String-line disturbances degrade smoothness. The profilers evaluated in this study are able to detect some string-line disturbances during paving operations. The profilers evaluated in this study are not currently able to produce the same absolute International Roughness Index (IRI) values on the plastic concrete that can be measured by inertial profilers on the hardened concrete. Construction application guidelines are provided.
Resumo:
The safety benefit of signalizing intersections of high-speed divided expressways is considered. Analyses were conducted on 50 and 55 mph and on 55 mph only intersections, comparing unsignalized and signalized intersections. Results of the 55 mph analysis are included in this report. Matched-pair analysis indicates that generally, signalized intersections have higher crash rate but lower costs per crash. On the other hand, before-and-after analysis (intersections signalized between 1994 and 2001) indicates lower crash rates (~30 percent) and total costs (~10 percent) after signalization. Empirical Bayes (EB) adjusted before-and-after analysis reduces estimates of safety benefit (crash rate) to about 20 percent. The study shows how commonly used analyses can differ in their results, and that there is great variability in the safety performance of individual signalized locations. This variability and the effect of EB adjustment are demonstrated through the use of innovative graphics.
Resumo:
The primary objective of the Fifth Assessment is to evaluate the level of progress in the deployment of high-speed Internet technologies in the State of Iowa.
Resumo:
Iowa has nearly 72,000 miles of streams. With one week of camping, miles of paddling, on-going educational opportunities, and hundreds of dedicated and hard-working Iowans, Project AWARE can make a difference – one stretch of river, one week a year, one piece of trash at a time. If it seems like a vacation to the participants…it is. They just learn and improve the river as they go.
Resumo:
The Iowa Leading Indicators Index (ILII) is a tool for monitoring the future direction of the Iowa economy and State revenues. Its eight components include an agricultural futures price index, an Iowa stock market index, average weekly manufacturing hours in Iowa, initial unemployment claims in Iowa, an Iowa new orders index, diesel fuel consumption in Iowa, residential building permits in Iowa, and the national yield spread.
Resumo:
The Iowa Leading Indicators Index (ILII) is a tool for monitoring the future direction of the Iowa economy and State revenues. Its eight components include an agricultural futures price index, an Iowa stock market index, average weekly manufacturing hours in Iowa, initial unemployment claims in Iowa, an Iowa new orders index, diesel fuel consumption in Iowa, residential building permits in Iowa, and the national yield spread.
Resumo:
The Iowa Leading Indicators Index (ILII) is a tool for monitoring the future direction of the Iowa economy and State revenues. Its eight components include an agricultural futures price index, an Iowa stock market index, average weekly manufacturing hours in Iowa, initial unemployment claims in Iowa, an Iowa new orders index, diesel fuel consumption in Iowa, residential building permits in Iowa, and the national yield spread.
Resumo:
The Iowa Leading Indicators Index (ILII) is a tool for monitoring the future direction of the Iowa economy and State revenues. Its eight components include an agricultural futures price index, an Iowa stock market index, average weekly manufacturing hours in Iowa, initial unemployment claims in Iowa, an Iowa new orders index, diesel fuel consumption in Iowa, residential building permits in Iowa, and the national yield spread.
Resumo:
The Iowa Leading Indicators Index (ILII) is a tool for monitoring the future direction of the Iowa economy and State revenues. Its eight components include an agricultural futures price index, an Iowa stock market index, average weekly manufacturing hours in Iowa, initial unemployment claims in Iowa, an Iowa new orders index, diesel fuel consumption in Iowa, residential building permits in Iowa, and the national yield spread.