13 resultados para future research

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 years of modeling efforts conducted by the U.S. Department of Agriculture (USDA), Agricultural Research Service. SWAT has gained international acceptance as a robust interdisciplinary watershed modeling tool, as evidenced by international SWAT conferences, hundreds of SWAT-related papers presented at numerous scientific meetings, and dozens of articles published in peer-reviewed journals. The model has also been adopted as part of the U.S. Environmental Protection Agency’s BASINS (Better Assessment Science Integrating Point & Nonpoint Sources) software package and is being used by many U.S. federal and state agencies, including the USDA within the Conservation Effects Assessment Project. At present, over 250 peer-reviewed, published articles have been identified that report SWAT applications, reviews of SWAT components, or other research that includes SWAT. Many of these peer-reviewed articles are summarized here according to relevant application categories such as streamflow calibration and related hydrologic analyses, climate change impacts on hydrology, pollutant load assessments, comparisons with other models, and sensitivity analyses and calibration techniques. Strengths and weaknesses of the model are presented, and recommended research needs for SWAT are provided.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this day of the mature highway systems, a new set of problems is facing the highway engineer. The existing infrastructure has aged to or past the design life of the original pavement design. In many cases, increased commercial traffic is creating the need for additional load carrying capacity, causing state highway engineers to consider new alternatives for rehabilitation of existing surfaces. Alternative surface materials, thicknesses, and methods of installation must be identified to meet the needs of individual pavements and budgets. With overlays being one of the most frequently used rehabilitation alternatives, it is important to learn more about the limitations and potential performance of thin bonded portland cement overlays and subsequent rehabilitation. The Iowa ultra-thin project demonstrated the application of thin portland cement concrete overlays as a rehabilitation technique. It combined the variables of base preparation, overlay thickness, slab size, and fiber enhancement into a series of test sections over a 7.2-mile length. This report identifies the performance of the overlays in terms of deflection reduction, reduced cracking, and improved bonding between the portland cement concrete (PCC) and asphalt cement concrete (ACC) base layers. The original research project was designed to evaluate the variables over a 5-year period of time. A second project provided the opportunity to test overlay rehabilitation techniques and continue measurement of the original overlay performance for 5 additional years. All performance indicators identified exceptional performance over the 10-year evaluation period for each of the variable combinations considered. The report summarizes the research methods, results, and identifies future research ideas to aid the pavement overlay designer in the successful implementation of ultra-thin portland cement concrete overlays as an lternative pavement rehabilitation technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possible code adoption and to provide a performance evaluation to ensure the viability of the first UHPC bridge in the United States. Two other secondary objectives included defining of material properties and understanding of flexural behavior of a UHPC bridge girder. In order to obtain information in these areas, several tests were carried out including material testing, large-scale laboratory flexure testing, large-scale laboratory shear testing, large-scale laboratory flexure-shear testing, small-scale laboratory shear testing, and field testing of a UHPC bridge. Experimental and analytical results of the described tests are presented. Analytical models to understand the flexure and shear behavior of UHPC members were developed using iterative computer based procedures. Previous research is referenced explaining a simplified flexural design procedure and a simplified pure shear design procedure. This work describes a shear design procedure based on the Modified Compression Field Theory (MCFT) which can be used in the design of UHPC members. Conclusions are provided regarding the viability of the UHPC bridge and recommendations are made for future research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report documents Phase IV of the Highway Maintenance Concept Vehicle (HMCV) project, a pooled fund study sponsored by the Departments of Transportation of Iowa, Pennsylvania, and Wisconsin. This report provides the background, including a brief history of the earlier phases of the project, a systems overview, and descriptions of the research conducted in Phase IV. Finally, the report provides conclusions and recommendations for future research. Background The goal of the Highway Maintenance Concept Vehicle Pooled Fund Study is to provide travelers with the level of service defined by policy during the winter season at the least cost to taxpayers. This goal is to be accomplished by using information regarding actual road conditions to facilitate and adjust snow and ice control activities. The approach used in this study was to bring technology applications from other industries to the highway maintenance vehicle. This approach is evolutionary in that as emerging technologies and applications are found to be acceptable to the pooled fund states and as they appear that to have potential for supporting the study goals they become candidates for our research. The objective of Phase IV is to: Conduct limited deployment of selected technologies from Phase III by equipping a vehicle with proven advanced technologies and creating a mobile test laboratory for collecting road weather data. The research quickly pointed out that investments in winter storm maintenance assets must be based on benefit/cost analysis and related to improving level of service. For example, Iowa has estimated the average cost of fighting a winter storm to be about $60,000 to $70,000 per hour typically. The maintenance concept vehicle will have advanced technology equipment capable of applying precisely the correct amount of material, accurately tailored to the existing and predicted pavement conditions. Hence, a state using advanced technology could expect to have a noticeable impact on the average time taken to establish the winter driving service level. If the concept vehicle and data produced by the vehicle are used to support decision-making leading to reducing material usage and the average time by one hour, a reasonable benefit/cost will result. Data from the friction meter can be used to monitor and adjust snow and ice control activities and inform travelers of pavement surface conditions. Therefore, final selection of successfully performing technologies will be based on the foundation statements and criteria developed by the study team.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report presents a review of literature on geosynthetic reinforced soil (GRS) bridge abutments, and test results and analysis from two field demonstration projects (Bridge 1 and Bridge 2) conducted in Buchanan County, Iowa, to evaluate the feasibility and cost effectiveness of the use of GRS bridge abutments on low-volume roads (LVRs). The two projects included GRS abutment substructures and railroad flat car (RRFC) bridge superstructures. The construction costs varied from $43k to $49k, which was about 50 to 60% lower than the expected costs for building a conventional bridge. Settlement monitoring at both bridges indicated maximum settlements ≤1 in. and differential settlements ≤ 0.2 in transversely at each abutment, during the monitoring phase. Laboratory testing on GRS fill material, field testing, and in ground instrumentation, abutment settlement monitoring, and bridge live load (LL) testing were conducted on Bridge 2. Laboratory test results indicated that shear strength parameters and permanent deformation behavior of granular fill material improved when reinforced with geosynthetic, due to lateral restraint effect at the soilgeosynthetic interface. Bridge LL testing under static loads indicated maximum deflections close to 0.9 in and non-uniform deflections transversely across the bridge due to poor load transfer between RRFCs. The ratio of horizontal to vertical stresses in the GRS fill was low (< 0.25), indicating low lateral stress on the soil surrounding GRS fill material. Bearing capacity analysis at Bridge 2 indicated lower than recommended factor of safety (FS) values due to low ultimate reinforcement strength of the geosynthetic material used in this study and a relatively weak underlying foundation layer. Global stability analysis of the GRS abutment structure revealed a lower FS than recommended against sliding failure along the interface of the GRS fill material and the underlying weak foundation layer. Design and construction recommendations to help improve the stability and performance of the GRS abutment structures on future projects, and recommendations for future research are provided in this report.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The quadrennial need study was developed to assist in identifying county highway financial needs (construction, rehabilitation, maintenance, and administration) and in the distribution of the road use tax fund (RUTF) among the counties in the state. During the period since the need study was first conducted using HWYNEEDS software, between 1982 and 1998, there have been large fluctuations in the level of funds distributed to individual counties. A recent study performed by Jim Cable (HR-363, 1993), found that one of the major factors affecting the volatility in the level of fluctuations is the quality of the pavement condition data collected and the accuracy of these data. In 1998, the Center for Transportation Research and Education researchers (Maze and Smadi) completed a project to study the feasibility of using automated pavement condition data collected for the Iowa Pavement Management Program (IPMP) for the paved county roads to be used in the HWYNEEDS software (TR-418). The automated condition data are objective and also more current since they are collected in a two year cycle compared to the 10-year cycle used by HWYNEEDS right now. The study proved the use of the automated condition data in HWYNEEDS would be feasible and beneficial in educing fluctuations when applied to a pilot study area. In another recommendation from TR-418, the researchers recommended a full analysis and investigation of HWYNEEDS methodology and parameters (for more information on the project, please review the TR-418 project report). The study reported in this document builds on the previous study on using the automated condition data in HWYNEEDS and covers the analysis and investigation of the HWYNEEDS computer program methodology and parameters. The underlying hypothesis for this study is thatalong with the IPMP automated condition data, some changes need to be made to HWYNEEDS parameters to accommodate the use of the new data, which will stabilize the process of allocating resources and reduce fluctuations from one quadrennial need study to another. Another objective of this research is to investigate the gravel roads needs and study the feasibility of developing a more objective approach to determining needs on the counties gravel road network. This study identifies new procedures by which the HWYNEEDS computer program is used to conduct the quadrennial needs study on paved roads. Also, a new procedure will be developed to determine gravel roads needs outside of the HWYNEED program. Recommendations are identified for the new procedures and also in terms of making changes to the current quadrennial need study. Future research areas are also identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims to improve the accuracy and usability of Iowa Falling Weight Deflectometer (FWD) data by incorporating significant enhancements into the fully-automated software system for rapid processing of the FWD data. These enhancements include: (1) refined prediction of backcalculated pavement layer modulus through deflection basin matching/optimization, (2) temperature correction of backcalculated Hot-Mix Asphalt (HMA) layer modulus, (3) computation of 1993 AASHTO design guide related effective SN (SNeff) and effective k-value (keff ), (4) computation of Iowa DOT asphalt concrete (AC) overlay design related Structural Rating (SR) and kvalue (k), and (5) enhancement of user-friendliness of input and output from the software tool. A high-quality, easy-to-use backcalculation software package, referred to as, I-BACK: the Iowa Pavement Backcalculation Software, was developed to achieve the project goals and requirements. This report presents theoretical background behind the incorporated enhancements as well as guidance on the use of I-BACK developed in this study. The developed tool, I-BACK, provides more fine-tuned ANN pavement backcalculation results by implementation of deflection basin matching optimizer for conventional flexible, full-depth, rigid, and composite pavements. Implementation of this tool within Iowa DOT will facilitate accurate pavement structural evaluation and rehabilitation designs for pavement/asset management purposes. This research has also set the framework for the development of a simplified FWD deflection based HMA overlay design procedure which is one of the recommended areas for future research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aims to improve the accuracy and usability of Iowa Falling Weight Deflectometer (FWD) data by incorporating significant enhancements into the fully-automated software system for rapid processing of the FWD data. These enhancements include: (1) refined prediction of backcalculated pavement layer modulus through deflection basin matching/optimization, (2) temperature correction of backcalculated Hot-Mix Asphalt (HMA) layer modulus, (3) computation of 1993 AASHTO design guide related effective SN (SNeff) and effective k-value (keff ), (4) computation of Iowa DOT asphalt concrete (AC) overlay design related Structural Rating (SR) and kvalue (k), and (5) enhancement of user-friendliness of input and output from the software tool. A high-quality, easy-to-use backcalculation software package, referred to as, I-BACK: the Iowa Pavement Backcalculation Software, was developed to achieve the project goals and requirements. This report presents theoretical background behind the incorporated enhancements as well as guidance on the use of I-BACK developed in this study. The developed tool, I-BACK, provides more fine-tuned ANN pavement backcalculation results by implementation of deflection basin matching optimizer for conventional flexible, full-depth, rigid, and composite pavements. Implementation of this tool within Iowa DOT will facilitate accurate pavement structural evaluation and rehabilitation designs for pavement/asset management purposes. This research has also set the framework for the development of a simplified FWD deflection based HMA overlay design procedure which is one of the recommended areas for future research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The foamed asphalt concept has been around since the 1950's. Rising oil prices have created a renewed interest in this process. The purpose of this project was to construct an asphalt base using the foamed asphalt process and to evaluate its performance. A 4.2 mile length of Muscatine County road A-91 was selected for the research project. Asphalt contents of 4.5% and 5.5%, moisture contents of 70% and 90% of optimum, and fog, single chip, and double chip seal coats were used in various combinations to lay 9 test sections of 4-inch foamed asphalt base. After five years of service and evaluation, several conclusions can be made concerning the performance of the foamed asphalt bases: (1) the foamed asphalt process can work as shown by the excellent performance of Sections 2 and 3; (2) foamed asphalt base requires a well compacted subgrade and a road profile suitable for good drainage of water--test section failures were mostly due to a poor subgrade and subsurface moisture; and (3) when the base is placed in two or more lifts, extreme care must be exercised to insure adequate bonding is achieved between lifts. Any future research with foamed asphalt should include various asphalt depths in order to determine a thickness/strength relationship for foamed asphalt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This project was undertaken jointly with a project supported by the Iowa Corn Promotion Board. Together the projects aimed at producing the organic acids, propionic acid and acetic acid, by fermentation. The impacts were to provide agriculturally-based alternatives to production of these acids, currently produced mainly as petrochemicals. The potentially high-demand use for acetic acid is as the "acetate" in Calcium Magnesium Acetate (CMA), the non-corrosive road deicer. Fermentation was, however, far from being an economically acceptable alternative. Gains were made in this work toward making this a feasible route. These advances included (1) development of a variant strain of propionibacteria capable of producing higher concentrations of acids; (2) comparison of conditions for several ways of cultivating free cells and establishment of the relative benefits of each; (3) achievement of the highest productivity in fermentations using immobilized cells; (4) identification of corn steep liquor as a lower cost substrate for the fermentation; (5) application of a membrane extraction system for acid recovery and reduction of product inhibition; and (6) initial use of more detailed economic analysis of process alternatives to guide in the identification of where the greatest payback potential is for future research. At this point, the fermentation route to these acids using the propionibacteria is technically feasible, but economically unfeasible. Future work with integration of the above process improvements can be expected to lead to further gains in economics. However, such work can not be expected to make CMA a less expensive deicer than common road salt.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The asphalt concrete (AC) dynamic modulus (|E*|) is a key design parameter in mechanistic-based pavement design methodologies such as the American Association of State Highway and Transportation Officials (AASHTO) MEPDG/Pavement-ME Design. The objective of this feasibility study was to develop frameworks for predicting the AC |E*| master curve from falling weight deflectometer (FWD) deflection-time history data collected by the Iowa Department of Transportation (Iowa DOT). A neural networks (NN) methodology was developed based on a synthetically generated viscoelastic forward solutions database to predict AC relaxation modulus (E(t)) master curve coefficients from FWD deflection-time history data. According to the theory of viscoelasticity, if AC relaxation modulus, E(t), is known, |E*| can be calculated (and vice versa) through numerical inter-conversion procedures. Several case studies focusing on full-depth AC pavements were conducted to isolate potential backcalculation issues that are only related to the modulus master curve of the AC layer. For the proof-of-concept demonstration, a comprehensive full-depth AC analysis was carried out through 10,000 batch simulations using a viscoelastic forward analysis program. Anomalies were detected in the comprehensive raw synthetic database and were eliminated through imposition of certain constraints involving the sigmoid master curve coefficients. The surrogate forward modeling results showed that NNs are able to predict deflection-time histories from E(t) master curve coefficients and other layer properties very well. The NN inverse modeling results demonstrated the potential of NNs to backcalculate the E(t) master curve coefficients from single-drop FWD deflection-time history data, although the current prediction accuracies are not sufficient to recommend these models for practical implementation. Considering the complex nature of the problem investigated with many uncertainties involved, including the possible presence of dynamics during FWD testing (related to the presence and depth of stiff layer, inertial and wave propagation effects, etc.), the limitations of current FWD technology (integration errors, truncation issues, etc.), and the need for a rapid and simplified approach for routine implementation, future research recommendations have been provided making a strong case for an expanded research study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production and use of biofuels has increased in the present context of sustainable development. Biofuel production from plant biomass produces not only biofuel or ethanol but also co-products containing lignin, modified lignin, and lignin derivatives. This research investigated the utilization of lignin-containing biofuel co-products (BCPs) in pavement soil stabilization as a new application area. Laboratory tests were conducted to evaluate the performance and the moisture susceptibility of two types of BCP-treated soil samples compared to the performance of untreated and traditional stabilizer-treated (fly ash) soil samples. The two types of BCPs investigated were (1) a liquid type with higher lignin content (co-product A) and (b) a powder type with lower lignin content (co-product B). Various additive combinations (co-product A and fly ash, co-products A and B, etc.) were also evaluated as alternatives to stand-alone co-products. Test results indicate that BCPs are effective in stabilizing the Iowa Class 10 soil classified as CL or A-6(8) and have excellent resistance to moisture degradation. Strengths and moisture resistance in comparison to traditional additives (fly ash) could be obtained through the use of combined additives (co-product A + fly ash; co-product A + co-product B). Utilizing BCPs as a soil stabilizer appears to be one of the many viable answers to the profitability of the bio-based products and the bioenergy business. Future research is needed to evaluate the freeze-thaw durability and for resilient modulus characterization of BCP-modified layers for a variety of pavement subgrade and base soil types. In addition, the long-term performance of these BCPs should be evaluated under actual field conditions and traffic loadings. Innovative uses of BCP in pavement-related applications could not only provide additional revenue streams to improve the economics of biorefineries, but could also serve to establish green road infrastructures.