2 resultados para full-scale testing

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The following report summarizes research activities on the project for the period December 1, 1986 to November 30, 1987. Research efforts for the second year deviated slightly from those described in the project proposal. By the end of the second year of testing, it was possible to begin evaluating how power plant operating conditions influenced the chemical and physical properties of fly ash obtained from one of the monitored power plants (Ottumwa Generating Station, OGS). Hence, several of the tasks initially assigned to the third year of the project (specifically tasks D, E, and F) were initiated during the second year of the project. Manpower constraints were balanced by delaying full scale implementation of the quantitative X-ray diffraction and differential thermal analysis tasks until the beginning of the third year of the project. Such changes should have little bearing on the outcome of the overall project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Precast prestressed concrete panels have been used in bridge deck construction in Iowa and many other states. To investigate the performance of these panels at abutment or pier diaphragm locations for bridges with various skew angles, a research program involving both analytical and experimental aspects, is being conducted. This interim report presents the status of the research with respect to four tasks. Task 1 which involves a literature review and two surveys is essentially complete. Task 2 which involved field investigations of three Iowa bridges containing precast panel subdecks has been completed. Based on the findings of these investigations, future inspections are recommended to evaluate potential panel deterioration due to possible corrosion of the prestressed strands. Task 3 is the experimental program which has been established to monitor the behavior of five configurations of full scale composite deck slabs. Three dimensional test and instrumentation frameworks have been constructed to load and monitor the slab specimens. The first slab configuration representing an interior panel condition is being tested and preliminary results are presented for one of these tests in this interim report. Task 4 involves the analytical investigation of the experimental specimens. Finite element methods are being applied to analytically predict the behavior of the test specimens. The first test configuration of the interior panel condition has been analyzed for the same loads used in the laboratory, and the results are presented herein. Very good correlation between the analytical and experimental results has occurred.