50 resultados para field study

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This project consisted of slipforming a 4-inch thick econocrete subbase on a 6-mile section of US 63. The project location extends south from one mile south of Denver, Iowa to Black Hawk County Road C-66 and consisted of the reconstruction and new construction of a divided four-lane facility. The econocrete was placed 27.3 feet wide in a single pass. Fly ash was used in this field study to replace 30, 45 and 60 percent of the portland cement in three portland cement econocrete base paving mixes. The three mixes contained 300, 350 and 400 pounds of cementitious material per cubic yard. Two Class "C" ashes from Iowa approved sources were used. The ash was substituted on the basis of one pound of ash for each pound of cement removed. The work was done October 6-29, 1987 and May 25-June 9, 1988. The twelve subbase mixes were placed in sections 2500 to 3000 feet in length on both the north and southbound roadways. Compressive strengths of all mixes were determined at 3 and 28 days of age. Flexural strengths of all mixes were determined at 7 and 14 days. In all cases strengths were adequate. The freeze/thaw durability of the econocrete mixes used was reduced by increased fly ash levels but remained above acceptable limits. The test results demonstrate the feasibility of producing econocrete with satisfactory properties even using fly ash at substitution rates up to 45 percent.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Micro-electromechanical systems (MEMS) provide vast improvements over existing sensing methods in the context of structural health monitoring (SHM) of highway infrastructure systems, including improved system reliability, improved longevity and enhanced system performance, improved safety against natural hazards and vibrations, and a reduction in life cycle cost in both operating and maintaining the infrastructure. Advancements in MEMS technology and wireless sensor networks provide opportunities for long-term continuous, real-time structural health monitoring of pavements and bridges at low cost within the context of sustainable infrastructure systems. The primary objective of this research was to investigate the use of MEMS in highway structures for health monitoring purposes. This study focused on investigating the use of MEMS and their potential applications in concrete through a comprehensive literature review, a vendor survey, and a laboratory study, as well as a small-scale field study. Based on the comprehensive literature review and vendor survey, the latest information available on off-the-shelf MEMS devices, as well as research prototypes, for bridge, pavement, and traffic applications were synthesized. A commercially-available wireless concrete monitoring system based on radio-frequency identification (RFID) technology and off-the-shelf temperature and humidity sensors were tested under controlled laboratory and field conditions. The test results validated the ability of the RFID wireless concrete monitoring system in accurately measuring the temperature both inside the laboratory and in the field under severe weather conditions. In consultation with the project technical advisory committee (TAC), the most relevant MEMS-based transportation infrastructure research applications to explore in the future were also highlighted and summarized.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over-consolidation is often visible as longitudinal vibrator trails in the surface of concrete pavements constructed using slip-form paving. Concrete research and practice have shown that concrete material selection and mix design can be tailored to provide a good compaction without the need for vibration. However, a challenge in developing self-consolidating concrete for slip-form paving (SF SCC) is that the new SF SCC needs to possess not only excellent self-compactibility and stability before extrusion, but also sufficient “green” strength after extrusion, while the concrete is still in a plastic state. The SF SCC to be developed will not be as fluid as the conventional SCC, but it will (1) be workable enough for machine placement, (2) be self-compacting with minimum segregation, (3) hold shape after extrusion from a paver, and (4) have performance properties (strength and durability) compatible to current pavement concrete. The overall objective of this project is to develop a new type of SCC for slip-form paving to produce more workable concrete and smoother pavements, better consolidation of the plastic concrete, and higher rates of production. Phase I demonstrated the feasibility of designing a new type of SF SCC that can not only self-consolidate, but also have sufficient green strength. In this phase, a good balance between flowability and shape stability was achieved by adopting and modifying the mix design of self-consolidating concrete to provide a high content of fine materials in the fresh concrete. It was shown that both the addition of fine particles and the modification of the type of plasticizer significantly improve fresh concrete flowability. The mixes used in this phase were also found to have very good shape stability in the fresh state. Phase II will focus on developing a SF SCC mix design in the lab and a performing a trial of the SF SCC in the field. Phase III will include field study, performance monitoring, and technology transfer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concrete curing is closely related to cement hydration, microstructure development, and concrete performance. Application of a liquid membrane-forming curing compound is among the most widely used curing methods for concrete pavements and bridge decks. Curing compounds are economical, easy to apply, and maintenance free. However, limited research has been done to investigate the effectiveness of different curing compounds and their application technologies. No reliable standard testing method is available to evaluate the effectiveness of curing, especially of the field concrete curing. The present research investigates the effects of curing compound materials and application technologies on concrete properties, especially on the properties of surface concrete. This report presents a literature review of curing technology, with an emphasis on curing compounds, and the experimental results from the first part of this research—lab investigation. In the lab investigation, three curing compounds were selected and applied to mortar specimens at three different times after casting. Two application methods, single- and double-layer applications, were employed. Moisture content, conductivity, sorptivity, and degree of hydration were measured at different depths of the specimens. Flexural and compressive strength of the specimens were also tested. Statistical analysis was conducted to examine the relationships between these material properties. The research results indicate that application of a curing compound significantly increased moisture content and degree of cement hydration and reduced sorptivity of the near-surface-area concrete. For given concrete materials and mix proportions, optimal application time of curing compounds depended primarily upon the weather condition. If a sufficient amount of a high-efficiency-index curing compound was uniformly applied, no double-layer application was necessary. Among all test methods applied, the sorptivity test is the most sensitive one to provide good indication for the subtle changes in microstructure of the near-surface-area concrete caused by different curing materials and application methods. Sorptivity measurement has a close relation with moisture content and degree of hydration. The research results have established a baseline for and provided insight into the further development of testing procedures for evaluation of curing compounds in field. Recommendations are provided for further field study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Severe environmental conditions, coupled with the routine use of deicing chemicals and increasing traffic volume, tend to place extreme demands on portland cement concrete (PCC) pavements. In most instances, engineers have been able to specify and build PCC pavements that met these challenges. However, there have also been reports of premature deterioration that could not be specifically attributed to a single cause. Modern concrete mixtures have evolved to become very complex chemical systems. The complexity can be attributed to both the number of ingredients used in any given mixture and the various types and sources of the ingredients supplied to any given project. Local environmental conditions can also influence the outcome of paving projects. This research project investigated important variables that impact the homogeneity and rheology of concrete mixtures. The project consisted of a field study and a laboratory study. The field study collected information from six different projects in Iowa. The information that was collected during the field study documented cementitious material properties, plastic concrete properties, and hardened concrete properties. The laboratory study was used to develop baseline mixture variability information for the field study. It also investigated plastic concrete properties using various new devices to evaluate rheology and mixing efficiency. In addition, the lab study evaluated a strategy for the optimization of mortar and concrete mixtures containing supplementary cementitious materials. The results of the field studies indicated that the quality management concrete (QMC) mixtures being placed in the state generally exhibited good uniformity and good to excellent workability. Hardened concrete properties (compressive strength and hardened air content) were also satisfactory. The uniformity of the raw cementitious materials that were used on the projects could not be monitored as closely as was desired by the investigators; however, the information that was gathered indicated that the bulk chemical composition of most materials streams was reasonably uniform. Specific minerals phases in the cementitious materials were less uniform than the bulk chemical composition. The results of the laboratory study indicated that ternary mixtures show significant promise for improving the performance of concrete mixtures. The lab study also verified the results from prior projects that have indicated that bassanite is typically the major sulfate phase that is present in Iowa cements. This causes the cements to exhibit premature stiffening problems (false set) in laboratory testing. Fly ash helps to reduce the impact of premature stiffening because it behaves like a low-range water reducer in most instances. The premature stiffening problem can also be alleviated by increasing the water–cement ratio of the mixture and providing a remix cycle for the mixture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The implementation of warm-mix asphalt (WMA) is becoming more widespread with a growing number of contractors utilizing various WMA technologies. Early research suggests WMA may be more susceptible to moisture damage than traditional hot-mix asphalt (HMA) mixes. The objectives of this study are to test the binder and mix properties of WMA technologies for both field- and laboratory-produced mixes to determine the performance of WMA compared to traditional HMA. Field- and laboratory-produced mixes were studied. The laboratory-produced mixes compared HMA control mixes with WMA mixes that had the same mix design. The WMA technologies used for the laboratory study were Advera, Sasobit, and Evotherm. The field study tested four WMA field-produced mixes. Each of the four mixes had a corresponding control HMA mix. The WMA technologies used in the field study included: Evotherm 3G/Revix, Sasobit, and Double Barrel Green Foaming. The three main factors for this study were WMA/HMA, moisture-conditioned/not moisture-conditioned, and reheated/not reheated. Mixes were evaluated based on performance tests. Binder testing was performed to determine the rheological differences between HMA and WMA binders to determine if binder grade requirements change with the addition of WMA additives. The conclusions of this study are as follows:  Reduced mixing and compaction temperatures were achieved.  Statistical differences were found when comparing tensile strength ratio (TSR) values for both laboratory- and field-produced mixes. In the laboratory, none of the WMA additives performed as well as the HMA. For the field mixes, all TSR values passed Iowa’s minimum specification of 0.8 but, on average, WMA is lower compared to HMA TSR values.  Dynamic modulus results show that, on average, HMA will have higher dynamic modulus values. This means the HMA exhibits stiffer material properties compared to WMA; this may not necessarily mean superior performance in all cases.  Flow number results show that WMA has reduced flow number values compared to HMA. The only exception was the fourth field mix and weather delayed production of the control mix by nine days. The laboratory mixes showed that flow number values increased significantly with the addition of recycled asphalt pavement (RAP).  In the laboratory study, Advera reduced TSR values. Given that Advera is a foaming agent, the increase in moisture susceptibility is likely attributed to the release of water necessary for the improvement of the workability of the asphalt mixture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (ASR). The available alkali test, which is commonly used to measure fly ash alkali, takes approximately 35 days for execution and reporting. Hence, in many instances the fly ash has already been incorporated into concrete before the test results are available. This complicates the job of the fly ash marketing agencies and it leads to disputes with fly ash users who often are concerned with accepting projects that contain materials that fail to meet specification limits. The research project consisted of a lab study and a field study. The lab study focused on the available alkali test and how fly ash alkali content impacts common performance tests (mortar-bar expansion tests). Twenty-one fly ash samples were evaluated during the testing. The field study focused on the inspection and testing of selected, well documented pavement sites that contained moderately reactive fine aggregate and high-alkali fly ash. A total of nine pavement sites were evaluated. Two of the sites were control sites that did not contain fly ash. The results of the lab study indicated that the available alkali test is prone to experimental errors that cause poor agreement between testing labs. A strong (linear) relationship was observed between available alkali content and total alkali content of Class C fly ash. This relationship can be used to provide a quicker, more precise method of estimating the available alkali content. The results of the field study failed to link the use of high-alkali fly ash with the occurrence of ASR in the various concrete sites. Petrographic examination of the pavement cores indicated that Wayland sand is an ASR-sensitive aggregate. This was in good agreement with Iowa DOT field service records. It was recommended that preventative measures should be used when this source of sand is used in concrete mixtures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reflective cracks form in pavements when hot-mix asphalt (HMA) overlays are placed over jointed and/or severely cracked rigid and flexible pavements. In the first part of the research, survival analysis was conducted to identify the most appropriate rehabilitation method for composite pavements and to evaluate the influence of different factors on reflective crack development. Four rehabilitation methods, including mill and fill, overlay, heater scarification (SCR), and rubblization, were analyzed using three performance indicators: reflective cracking, international roughness index (IRI), and pavement condition index (PCI). It was found that rubblization can significantly retard reflective cracking development compared to the other three methods. No significant difference for PCI was seen among the four rehabilitation methods. Heater scarification showed the lowest survival probability for both reflective cracking and IRI, while an overlay resulted in the poorest overall pavement condition based on PCI. In addition, traffic level was found not to be a significant factor for reflective cracking development. An increase in overlay thickness can significantly delay the propagation of reflective cracking for all four treatments. Soil types in rubblization pavement sites were assessed, and no close relationship was found between rubblized pavement performance and subgrade soil condition. In the second part of the research, the study objective was to evaluate the modulus and performance of four reflective cracking treatments: full rubblization, modified rubblization, crack and seat, and rock interlayer. A total of 16 pavement sites were tested by the surface wave method (SWM), and in the first four sites both falling weight deflectometer (FWD) and SWM were conducted for a preliminary analysis. The SWM gave close concrete layer moduli compared to the FWD moduli on a conventional composite pavement. However, the SWM provided higher moduli for the rubblized concrete layer. After the preliminary analysis, another 12 pavement sites were tested by the SWM. The results showed that the crack and seat method provided the highest moduli, followed by the modified rubblization method. The full rubblization and the rock interlayer methods gave similar, but lower, moduli. Pavement performance surveys were also conducted during the field study. In general, none of the pavement sites had rutting problems. The conventional composite pavement site had the largest amount of reflective cracking. A moderate amount of reflective cracking was observed for the two pavement sites with full rubblization. Pavements with the rock interlayer and modified rubblization treatments had much less reflective cracking. It is recommended that use of the modified rubblization and rock interlayer treatments for reflective cracking mitigation are best.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across the pavement depth. This phenomenon, referred to as PCC pavement curling and warping, has been known and studied since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore important to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also to achieve a better understanding of its relationship to long-term pavement performance. In order to better understand the curling and warping behavior of PCC pavements in Iowa and provide recommendations to mitigate curling and warping deflections, field investigations were performed at six existing sites during the late fall of 2015. These sites included PCC pavements with various ages, slab shapes, mix design aspects, and environmental conditions during construction. A stationary light detection and ranging (LiDAR) device was used to scan the slab surfaces. The degree of curling and warping along the longitudinal, transverse, and diagonal directions was calculated for the selected slabs based on the point clouds acquired using LiDAR. The results and findings are correlated to variations in pavement performance, mix design, pavement design, and construction details at each site. Recommendations regarding how to minimize curling and warping are provided based on a literature review and this field study. Some examples of using point cloud data to build three-dimensional (3D) models of the overall curvature of the slab shape are presented to show the feasibility of using this 3D analysis method for curling and warping analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A review of the Iowa Department of Transportation's field data collection and reporting system has been performed. Included were several systems used by the Office of Construction and Local Jurisdictions. The entire field data collection and reporting systems for asphalt cement concrete (ACC) paving, portland cement concrete (PCC) paving, and PCC structures were streamlined and computerized. The field procedures for materials acceptance were also reviewed. Best practices were identified and a method was developed to prioritize materials so transportation agencies could focus their efforts on high priority materials. Iowa State University researchers facilitated a discussion about Equal Employment Opportunity (EEO) and Affirmative Action (AA) procedures between the Office of Construction field staff and the Office of Contracts. A set of alternative procedures was developed. Later the Office of Contracts considered these alternatives as they developed new procedures that are currently being implemented. The job close-out package was reviewed and two unnecessary procedures were eliminated. Numerous other procedures were reviewed and flowcharted. Several changes have been recommended that will increase efficiency and allow staff time to be devoted to higher priority activities. It is estimated the improvements in ACC paving, PCC paving and structural concrete will by similar to three full time equivalent (FTE) positions to field construction, field materials and Office of Materials. Elimination of EEO interviews will be equivalent to one FTE position. It is estimated that other miscellaneous changes will be equivalent to at least one other FTE person. This is a total five FTEs. These are conservative estimates based on savings that are easily quantified. It is likely that total positive effect is greater when items that are difficult to quantify are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber composite materials (FRP) are making an entry into the construction market in both buildings and pavements. The application to pavements comes in the form of joint reinforcement (dowels and tie bars) to date. FRP resistance to salt corrosion in dowels has made it an alternative to standard epoxy coated dowels for pavements. Iowa State University has completed a large amount of laboratory research into the determination of diameter, spacing, and durability of FRP dowels. This report documents the installation of a series of FRP elliptical-shaped dowel joints (including instrumented units) in a field situation and the beginning of a two-year study to compare laboratory results to in-service pavements. Ten joints were constructed for each of three dowel spacings of 10, 12, and 15 inches ( 254, 305, and 381 mm) with one instrumented joint in each test section. The instrumented bars will be load tested with a loaded truck and FWD testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important issues in portland cement concrete pavement research today is surface characteristics. The issue is one of balancing surface texture construction with the need for durability, skid resistance, and noise reduction. The National Concrete Pavement Technology Center at Iowa State University, in conjunction with the Federal Highway Administration, American Concrete Pavement Association, International Grinding and Grooving Association, Iowa Highway Research Board, and other states, have entered into a three-part National Surface Characteristics Program to resolve the balancing problem. As a portion of Part 2, this report documents the construction of 18 separate pavement surfaces for use in the first level of testing for the national project. It identifies the testing to be done and the limitations observed in the construction process. The results of the actual tests will be included in the subsequent national study reports.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.