2 resultados para explicit categorization
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
We review some of the most significant issues and results on the economic effects of genetically modified (GM) product innovation, with emphasis on the question of GM labeling and the need for costly segregation and identity preservation activities. The analysis is organized around an explicit model that can accommodate the features of both first-generation and second-generation GM products. The model accounts for the proprietary nature of GM innovations and for the critical role of consumer preferences vis-à-vis GM products, as well as for the impacts of segregation and identity preservation and the effects of a mandatory GM labeling regulation. We also investigate briefly a novel question in this setting, the choice of “research direction”when both cost-reducing and quality-enhancing GM innovations are feasible.
Resumo:
The characterization and categorization of coarse aggregates for use in portland cement concrete (PCC) pavements is a highly refined process at the Iowa Department of Transportation. Over the past 10 to 15 years, much effort has been directed at pursuing direct testing schemes to supplement or replace existing physical testing schemes. Direct testing refers to the process of directly measuring the chemical and mineralogical properties of an aggregate and then attempting to correlate those measured properties to historical performance information (i.e., field service record). This is in contrast to indirect measurement techniques, which generally attempt to extrapolate the performance of laboratory test specimens to expected field performance. The purpose of this research project was to investigate and refine the use of direct testing methods, such as X-ray analysis techniques and thermal analysis techniques, to categorize carbonate aggregates for use in portland cement concrete. The results of this study indicated that the general testing methods that are currently used to obtain data for estimating service life tend to be very reliable and have good to excellent repeatability. Several changes in the current techniques were recommended to enhance the long-term reliability of the carbonate database. These changes can be summarized as follows: (a) Limits that are more stringent need to be set on the maximum particle size in the samples subjected to testing. This should help to improve the reliability of all three of the test methods studied during this project. (b) X-ray diffraction testing needs to be refined to incorporate the use of an internal standard. This will help to minimize the influence of sample positioning errors and it will also allow for the calculation of the concentration of the various minerals present in the samples. (c) Thermal analysis data needs to be corrected for moisture content and clay content prior to calculating the carbonate content of the sample.