11 resultados para evolved transforms
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.
Resumo:
We explore and investigate Japanese dairy markets. We first provide an overview of consumer demand and how it evolved after World War II. Using historical data and econometric estimates of Japanese dairy demand, we identify economic, cultural, and demographic forces that have been shaping consumption patterns. Then we summarize the characteristics of Japanese milk production and dairy processing and policies affecting them. We next describe the import regime and trade flows in dairy products. The analysis of the regulatory system of the dairy sector shows how its incentive structure affects the long-term prospects of various segments of the industry. The paper concludes with policy recommendations of how to reform the Japanese dairy sector.
Resumo:
In recent years, thin whitetopping has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavements. Numerous projects have been constructed and tested; these projects allow researchers to identify the important elements contributing to the projects’ successes. These elements include surface preparation, overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. Although the main factors affecting thin whitetopping performance have been identified by previous research, questions still existed as to the optimum design incorporating these variables. The objective of this research is to investigate the interaction between these variables over time. Laboratory testing and field-testing were planned in order to accomplish the research objective. Laboratory testing involved shear testing of the bond between the portland cement concrete (PCC) overlay and the ACC surface. Field-testing involved falling weight deflectometer deflection responses, measurement of joint faulting and joint opening, and visual distress surveys on the 9.6-mile project. The project was located on Iowa Highway 13 extending north from the city of Manchester, Iowa, to Iowa Highway 3 in Delaware County. Variables investigated included ACC surface preparation, PCC thickness, synthetic fiber reinforcement usage, and joint spacing. This report documents the planning, equipment selection, construction, field changes, and construction concerns of the project built in 2002. The data from this research could be combined with historical data to develop a design specification for the construction of thin, unbonded overlays.
Resumo:
Severe environmental conditions, coupled with the routine use of deicing chemicals and increasing traffic volume, tend to place extreme demands on portland cement concrete (PCC) pavements. In most instances, engineers have been able to specify and build PCC pavements that met these challenges. However, there have also been reports of premature deterioration that could not be specifically attributed to a single cause. Modern concrete mixtures have evolved to become very complex chemical systems. The complexity can be attributed to both the number of ingredients used in any given mixture and the various types and sources of the ingredients supplied to any given project. Local environmental conditions can also influence the outcome of paving projects. This research project investigated important variables that impact the homogeneity and rheology of concrete mixtures. The project consisted of a field study and a laboratory study. The field study collected information from six different projects in Iowa. The information that was collected during the field study documented cementitious material properties, plastic concrete properties, and hardened concrete properties. The laboratory study was used to develop baseline mixture variability information for the field study. It also investigated plastic concrete properties using various new devices to evaluate rheology and mixing efficiency. In addition, the lab study evaluated a strategy for the optimization of mortar and concrete mixtures containing supplementary cementitious materials. The results of the field studies indicated that the quality management concrete (QMC) mixtures being placed in the state generally exhibited good uniformity and good to excellent workability. Hardened concrete properties (compressive strength and hardened air content) were also satisfactory. The uniformity of the raw cementitious materials that were used on the projects could not be monitored as closely as was desired by the investigators; however, the information that was gathered indicated that the bulk chemical composition of most materials streams was reasonably uniform. Specific minerals phases in the cementitious materials were less uniform than the bulk chemical composition. The results of the laboratory study indicated that ternary mixtures show significant promise for improving the performance of concrete mixtures. The lab study also verified the results from prior projects that have indicated that bassanite is typically the major sulfate phase that is present in Iowa cements. This causes the cements to exhibit premature stiffening problems (false set) in laboratory testing. Fly ash helps to reduce the impact of premature stiffening because it behaves like a low-range water reducer in most instances. The premature stiffening problem can also be alleviated by increasing the water–cement ratio of the mixture and providing a remix cycle for the mixture.
Resumo:
In recent years, thin whitetopping has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavements. Numerous projects have been constructed and tested, allowing researchers to identify the important elements contributing to the projects’ successes. These elements include surface preparation, overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. Although the main factors affecting thin whitetopping performance have been identified by previous research, questions still existed as to the optimum design incorporating these variables. The objective of this research is to investigate the interaction between these variables over time. Laboratory testing and field testing were conducted to achieve the research objectives. Laboratory testing involved shear testing of the bond between the portland cement concrete (PCC) overlay and the ACC surface. Field testing involved falling weight deflectometer deflection responses, measurement of joint faulting and joint opening, and visual distress surveys on the 9.6-mile project. The project was located on Iowa Highway 13 extending north from the city of Manchester, Iowa, to Iowa Highway 3 in Delaware County. Variables investigated include ACC surface preparation, PCC thickness, slab size, synthetic fiber reinforcement usage, and joint spacing. This report documents the planning, construction, and performance of each variable in the time period from summer 2002 through spring 2006. The project has performed well with only minor distress identification since its construction.
Resumo:
Tort claims resulting from alleged highway defects have introduced an additional element in the planning, design, construction, and maintenance of highways. A survey of county governments in Iowa was undertaken in order to quantify the magnitude and determine the nature of this problem. This survey included the use of mailed questionnaires and personal interviews with County Engineers. Highway-related claims filed against counties in Iowa amounted to about $52,000,000 during the period 1973 through 1978. Over $30,000,000 in claims was pending at the end of 1978. Settlements of judgments were made at a cost of 12.2% of the amount claimed for those claims that had been disposed of, not including costs for handling claims, attorney fees, or court costs. There was no clear time trend in the amount of claims for the six-year period surveyed, although the amount claimed in 1978 was about double the average for the preceding five years. Problems that resulted in claims for damages from counties have generally related to alleged omissions in the use of traffic control devices or defects, often temporary, resulting from alleged inadequacies in highway maintenance. The absence of stop signs or warning signs often has been the central issue in a highway-related tort claim. Maintenance problems most frequently alleged have included inadequate shoulders, surface roughness, ice o? snow conditions, and loose gravel. The variation in the occurrence of tort claims among 85 counties in Iowa could not be related to any of the explanatory variables that were tested. Claims appeared to have occurred randomly. However, using data from a sub sample of 11 counties, a significant relationship was shown probably to exist between the amount of tort claims and the extensiveness of use of warning signs on the respective county road systems. Although there was no indication in any county that their use of warning signs did not conform with provisions of the Manual on Uniform Traffic Control Devices (Federal Highway Administration, Government Printing Office, Washington, D.C., 1978), many more warning signs were used in some counties than would be required to satisfy this minimum requirement. Sign vandalism reportedly is a problem in all counties. The threat of vandalism and the added costs incurred thereby have tended to inhibit more extensive use of traffic control devices. It also should be noted that there is no indication from this research of a correlation between the intensiveness of sign usage and highway safety. All highway maintenance activities introduce some extraordinary hazard for motorists. Generally effective methodologies have evolved for use on county road systems for routine maintenance activities, procedures that tend to reduce the hazard to practical and reasonably acceptable levels. Blading of loose-surfaced roads is an example of such a routine maintenance activity. Alternative patterns for blading that were investigated as part of this research offered no improvements in safety when compared with the method in current use and introduced a significant additional cost that was unacceptable, given the existing limitations in resources available for county roads.
Resumo:
The year 1949 saw the Iowa General Assembly’s establishment of the Iowa Secondary Road Research Fund, which led to the creation of a supervisory board within what was then the Iowa State Highway Commission to oversee the expenditure of that fund. The purpose of the fund and the board was to research road construction topics likely to be beneficial to the working of Iowa’s secondary, or local, road system. The supervisory board—called the Iowa Highway Research Board (the “Board”)—was organized by the highway commission in December 1949 and first met in May 1950. The creation of the fund and of the Iowa Highway Research Board marked the first organized effort in the United States to investigate local road construction problems and placed Iowa in the forefront of this field of engineering research. That Iowa should be a leader in such an effort is not surprising, given the early and sustained emphasis of the Iowa State Highway Commission on both research and the dissemination of information to county authorities. Now, 50 years later, a retrospective is in order. To that end, the Iowa Highway Research Board commissioned the preparation of a commemorative history. This work is the result of that project. Throughout its existence, the Board has funded nearly 450 projects, several of national significance. Many new construction and maintenance techniques have been developed, some of which have evolved into standard practices in highway construction. Innovative new materials and equipment have been tested. Still other projects have considered a wide variety of subjects related to the efficient operation of the highway system. Highway safety, conservation, and law have all come under research scrutiny. While it will not be possible, given the short space available, to consider all the projects financed by the Iowa Highway Research Board, it is well worthwhile to examine the Board’s principal projects and its resulting contributions to the field of highway research.
Resumo:
Tort claims resulting from alleged highway defects have introduced an additional element in the planning, design, construction, and maintenance of highways. A survey of county governments in Iowa was undertaken in order to quantify the magnitude and determine the nature of this problem. This survey included the use of mailed questionnaires and personal interviews with County Engineers. Highway-related claims filed against counties in Iowa amounted to about $52,000,000 during the period 1973 through 1978. Over $30,000,000 in claims was pending at the end of 1978. Settlements of judgments were made at a cost of 12.2% of the amount claimed for those claims that had been disposed of, not including costs for handling claims, attorney fees, or court costs. There was no clear time trend in the amount of claims for the six-year period surveyed, although the anount claimed in 1978 was about double the average for the preceding five years. Problems that resulted in claims for damages from counties have generally related to alleged omissions in the use of traffic control devices or defects, often temporary, resulting from alleged inadequacies in highway maintenance. The absence of stop signs or warning signs often has been the central issue in a highway-related tort claim. Maintenance problems most frequently alleged have included inadequate shoulders, surface roughness, ice o? snow conditions, and loose gravel. The variation in the occurrence of tort claims among 85 counties in Iowa could not be related to any of the explanatory variables that were tested. Claims hppeared to have occurred randomly. However, using data from a subsample of 11 counties, a significant relationship was shown probably to exist between the amount of tort claims and the extensiveness of use of wcirning signs on the respective county road systems. Although there was no indication in any county that their use of warning signs did not conform with provisions of the Manual on Uniform Traffic Control Devices (Federal Highway Administration, Government Printing Office, Washington, D.C., 1978), many more warning signs were used in some counties than would be required to satisfy this minimum requirement. Sign vandalism reportedly is a problem in all counties. The threat of vandalism and the added costs incurred thereby have tended to inhibit more extensive use of traffic control devices. It also should be noted that there is no indication from this research of a correlation between the intensiveness of sign usage and highway safety. All highway maintenance activities introduce some extraordinary hazard for motorists. Generally effective methodologies have evolved for use on county road systems for routine maintenance activities, procedures that tend to reduce the hazard to practical and reasonably acceptable levels. Blading of loose-surfaced roads is an examples such a routine maintenance activity. Alternative patterns for blading that were investigated as part of this research offered no improvements in safety when compared with the method in current use and introduced a significant additional cost that was unacceptable, given the existing limitations in resources available for county roads.
Resumo:
In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, the interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. Although the main factors affecting UTW performance have been identified in previous research, neither the impact that external variables have on the elements nor the element interaction have been thoroughly investigated. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. Laboratory testing and full scale field testing were planned to accomplish the research objective. Laboratory testing involved monitoring interface strains in fabricated PCC/ACC composite test beams subjected to either static or dynamic flexural loading. Variables investigated included ACC surface preparation, PCC thickness, and synthetic fiber reinforcement usage. Field testing involved monitoring PCC/ACC interface stains and temperatures, falling weight deflectometer (FWD) deflection responses, direct shear strengths, and distresses on a 7.2 mile Iowa Department of Transportation (Iowa DOT) UTW project (HR-559). The project was located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. Variables investigated included ACC surface preparation, PCC thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. This report documents the planning, equipment selection, and construction of the project built in 1994.
Resumo:
In recent years, ultra-thin whitetopping (UTW) has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavement. Numerous UTW projects have been constructed and tested, enabling researchers to identify key elements contributing to their successful performance. These elements include foundation support, interface bonding condition, portland cement concrete (PCC) overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. The interface bonding condition is the most important of these elements. It enables the pavement to act as a composite structure, thus reducing tensile stresses and allowing an ultra-thin PCC overlay to perform as intended. The Iowa Department of Transportation (Iowa DOT) UTW project (HR-559) initiated UTW in Iowa. The project is located on Iowa Highway 21 between Iowa Highway 212 and U.S. Highway 6 in Iowa County, near Belle Plaine, Iowa. The objective of this research was to investigate the interface bonding condition between an ultra-thin PCC overlay and an ACC base over time, considering the previously mentioned variables. This research lasted for five years, at which time it was extended an additional five years. The new phase of the project was initiated by removing cracked panels existing in the 2-inch thick PCC sections and replacing them with three inches of PCC. The project extension (TR 432) will provide an increased understanding of slab bonding conditions over a longer period, as well as knowledge regarding the behavior of the newly rehabilitated areas. In order to accomplish the goals of the project extension, Falling Weight Deflectometer (FWD) testing will continue to be conducted. Laboratory testing, field strain gage implementation, and coring will no longer be conducted. This report documents the planning and construction of the rehabilitation of HR 559 and the beginning of TR 432 during August of 1999.
Resumo:
Man’s never-ending search for better materials and construction methods and for techniques of analysis and design has overcome most of the early difficulties of bridge building. Scour of the stream bed, however, has remained a major cause of bridge failures ever since man learned to place piers and abutments in the stream in order to cross wide rivers. Considering the overall complexity of field conditions, it is not surprising that no generally accepted principles (not even rules of thumb) for the prediction of scour around bridge piers and abutments have evolved from field experience alone. The flow of individual streams exhibits a manifold variation, and great disparity exists among different rivers. The alignment, cross section, discharge, and slope of a stream must all be correlated with the scour phenomenon, and this in turn must be correlated with the characteristics of the bed material ranging from clays and fine silts to gravels and boulders. Finally, the effect of the shape of the obstruction itself-the pier or abutment-must be assessed. Since several of these factors are likely to vary with time to some degree, and since the scour phenomenon as well is inherently unsteady, sorting out the influence of each of the various factors is virtually impossible from field evidence alone. The experimental approach was chosen as the investigative method for this study, but with due recognition of the importance of field measurements and with the realization that the results must be interpreted so as to be compatible with the present-day theories of fluid mechanics and sediment transportation. This approach was chosen because, on the one hand, the factors affecting the scour phenomenon can be controlled in the laboratory to an extent that is not possible in the field, and, on the other hand, the model technique can be used to circumvent the present inadequate understanding of the phenomenon of the movement of sediment by flowing water. In order to obtain optimum results from the laboratory study, the program was arranged at the outset to include a related set of variables in each of several phases into which the whole problem was divided. The phases thus selected were : 1. Geometry of piers and abutments, 2. Hydraulics of the stream, 3. Characteristics of the sediment, 4. Geometry of channel shape and alignment.