19 resultados para dust capture devices
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The State of Iowa currently has approximately 69,000 miles of unpaved secondary roads. Due to the low traffic count on these unpaved o nts as ng e two dust ed d roads, paving with asphalt or Portland cement concrete is not economical. Therefore to reduce dust production, the use of dust suppressants has been utilized for decades. This study was conducted to evaluate the effectiveness of several widely used dust suppressants through quantitative field testing on two of Iowa’s most widely used secondary road surface treatments: crushed limestone rock and alluvial sand/gravel. These commercially available dust suppressants included: lignin sulfonate, calcium chloride, and soybean oil soapstock. These suppressants were applied to 1000 ft test sections on four unpaved roads in Story County, Iowa. Tduplicate field conditions, the suppressants were applied as a surface spray once in early June and again in late August or early September. The four unpaved roads included two with crushed limestone rock and two with alluvial sand/gravel surface treatmewell as high and low traffic counts. The effectiveness of the dust suppressants was evaluated by comparing the dust produced on treated and untreated test sections. Dust collection was scheduled for 1, 2, 4, 6, and 8 weeks after each application, for a total testiperiod of 16 weeks. Results of a cost analysis between annual dust suppressant application and biennial aggregate replacement indicated that the cost of the dust suppressant, its transportation, and application were relatively high when compared to that of thaggregate types. Therefore, the biennial aggregate replacement is considered more economical than annual dust suppressant application, although the application of annual dust suppressant reduced the cost of road maintenance by 75 %. Results of thecollection indicated that the lignin sulfonate suppressant outperformed calcium chloride and soybean oil soapstock on all four unpavroads, the effect of the suppressants on the alluvial sand/gravel surface treatment was less than that on the crushed limestone rock, the residual effects of all the products seem reasonably well after blading, and the combination of alluvial sand/gravel surface treatment anhigh traffic count caused dust reduction to decrease dramatically.
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
This brochure explains Iowa's laws concerning the use of cell phones and other electronic communication devices while driving.
Resumo:
Iowa Traffic Control Devices and Pavement Markings: A Manual for Cities and Counties has been developed to provide state and local transportation agencies with suggestions and examples related to traffic control devices and pavement markings. Both rural and urban applications are included. The primary source of information for this document is the Manual on Uniform Traffic Control Devices (MUTCD), but many additional references have also been used. A complete listing of these is included in the appendix to this manual, and the reader is invited to consult these references for more in-depth information. The contents of this manual are not intended to represent standard practice or to imply legal requirements for installation in any particular manner. This document should be used as a supplement to the MUTCD, not as a substitute for any requirements contained therein. Engineering judgement should be applied to all decisions regarding traffic control devices and pavement markings. All references to the MUTCD in this manual apply to the millennium edition. The reader should be aware that many millennium revisions are allowed phase-in periods by the Federal Highway Administration (FHWA), ranging from two to ten years. These extended compliance periods should be considered when making decisions regarding traffic control devices and pavement markings. A new addition to the MUTCD, Part 5, “Traffic Control Devices for Low-Volume Roads,” also contains valuable recommendations for signing and marking low volume roads. This manual is presented in an easy to use threering format. Topics included in the complete guide manual may not apply to all jurisdictions and can easily be removed or modified as desired. Desired millennium MUTCD sections may be added for quick reference using the divider at the end of this document. Contents may also be available on CD-ROM in the future.
Resumo:
The objective of this project was to promote and facilitate analysis and evaluation of the impacts of road construction activities in Smart Work Zone Deployment Initiative (SWZDI) states. The two primary objectives of this project were to assess urban freeway work-zone impacts through use of remote monitoring devices, such as radar-based traffic sensors, traffic cameras, and traffic signal loop detectors, and evaluate the effectiveness of using these devices for such a purpose. Two high-volume suburban freeway work zones, located on Interstate 35/80 (I-35/I-80) through the Des Moines, Iowa metropolitan area, were evaluated at the request of the Iowa Department of Transportation (DOT).
Resumo:
Transportation agencies in Iowa are responsible for a significant public investment with the installation and maintenance of traffic control devices and pavement markings. Included in this investment are thousands of signs and other inventory items, equipment, facilities, and staff. The proper application of traffic control devices and pavement markings is critical to public safety on streets and highways, and local governments have a prescribed responsibility under the Code of Iowa to properly manage these assets. This research report addresses current traffic control and pavement marking application, maintenance, and management in Iowa.
Resumo:
Crashworthy, work-zone, portable sign support systems accepted under NCHRP Report No. 350 were analyzed to predict their safety peformance according to the TL-3 MASH evaluation criteria. An analysis was conducted to determine which hardware parameters of sign support systems would likely contribute to the safety performance with MASH. The acuracy of the method was evaluated through full-scale crash testing. Four full-scale crash tests were conducted with a pickup truck. Two tall-mounted, sign support systems with aluminum sign panels failed the MASH criteria due to windshield penetration. One low-mounted system with a vinyl, roll-up sign panel failed the MASH criteria due to windshield and floorboard penetration. Another low-mounted system with an aluminum sign panel successfully met the MASH criteria. Four full-scale crash tests were conducted with a small passenger car. The low-mounted tripod system with an aluminum sign panel failed the MASH criteria due to windshield penetration. One low-mounted system with aluminum sign panel failed the MASH criteria due to excessive windshield deformation, and another similar system passed the MASH criteria. The low-mounted system with a vinyl, roll-up sign panel successfully met the MASH criteria. Hardware parameters of work-zone sign support systems that were determined to be important for failure with MASH include sign panel material, the height to the top of the mast, the presence of flags, sign-locking mechanism, base layout and system orientation. Flowcharts were provided to assist manufacturers when designing new sign support systems.
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: The Drive to Destroy: Removing data from computer hard drives, storage devices & wireless phones
Resumo:
This report discusses the asphalt pavement recycling project designated Project HR-188 in Kossuth County, Iowa. Specific objectives were: (a) to determine the effectiveness of drum mixing plant modifications designed to control air pollution within limits specified by the Iowa Department of Environmental Quality; (b) to assess the impact of varying the proportions of recycled and virgin aggregates, (c) to assess the impact of varying the production rate of the plant, and (d) to assess the impact of varying the mixing temperature. The discussion includes information on the proposed use of research funds, project location and description, the project planning conference, plan development, bid letting, asphalt plant configuration, actual plant operation, why this method is successful, probable process limitations, pollution results, recycled pavement test results, and the cost of virgin vs. recycled asphalt pavements.
Resumo:
Portable (roll-out) stop signs are used at school crossings in over 300 cities in Iowa. Their use conforms to the Code of Iowa, although it is not consistent with the provisions of the Manual on Uniform Traffic Control Devices adopted for nationwide application. A survey indicated that most users in Iowa believe that portable stop signs provide effective protection at school crossings, and favor their continued use. Other non-uniform signs that fold or rotate to display a STOP message only during certain hours are used at school crossings in over 60 cities in Iowa. Their use does not conform to either the Code of Iowa or the Manual on Uniform Traffic Control Devices. Users of these devices also tend to favor their continued use. A survey of other states indicated that use of temporary devices similar to those used in Iowa is not generally sanctioned. Some unsanctioned use apparently occurs in several states, however. A different type of portable stop sign for school crossings is authorized and widely used in one state. Portable stop signs similar to those used in Iowa are authorized in another state, although their use is quite limited. A few reports in the literature reviewed for this research discussed the use of portable stop signs. The authors of these reports uniformly recommended against the use of portable or temporary traffic control devices. Various reasons for this recommendation were given, although data to support the recommendation were not offered. As part of this research, field surveys were conducted at 54 locations in 33 communities where temporary stop control devices were in use at school crossings. Research personnel observed the obedience to stop control and measured the vehicular delay incurred. Stopped delay averaged 1.89 seconds/entering vehicle. Only 36.6 percent of the vehicles were observed to come to a complete stop at the study locations controlled by temporary stop control devices. However, this level of obedience does not differ from that observed at intersections controlled by permanent stop signs. Accident experience was compiled for 76 intersections in 33 communities in Iowa where temporary stop signs were used and, for comparative purposes, at 76 comparable intersections having other forms of control or operating without stop control. There were no significant differences in accident experience An economic analysis of vehicle operating costs, delay costs, and other costs indicated that temporary stop control generated costs only about 12 percent as great as permanent stop control for a street having a school crossing. Midblock pedestrian-actuated signals were shown to be cost effective in comparison with temporary stop signs under the conditions of use assumed. Such signals could be used effectively at a number of locations where temporary stop signs are being used. The results of this research do not provide a basis for recommending that use of portable stop signs be prohibited. However, erratic patterns of use of these devices and inadequate designs suggest that improved standards for their use are needed. Accordingly, nine recommendations are presented to enhance the efficiency of vehicular flow at school crossings, without causing a decline in the level of pedestrian protection being afforded.
Resumo:
In an effort to control fugitive dust on a gravel surfaced roadway in Boone County, a cationic asphalt emulsion was blended with warm water and applied with an asphalt distributor. The test included various application procedures. After visual observations, it was concluded that this procedure utilizing a dilute asphalt emulsion was not an effective method of dust control.
Resumo:
This research project was directed at laboratory and field evaluation of sodium montmorillonite clay (bentonite) as a dust palliative for limestone surfaced secondary roads. It had been postulated that the electrically charged surfaces of the clay particles could interact with the charged surfaces of the limestone and act as a bonding agent to agglomerate fine (-#200) particulates and also to band the fine particulates to larger (+#200) limestone particles. Laboratory testing using soda ash dispersed bentonite treatment of limestone fines indicated significant improvement of compressive strength and slaking characteristics. It was recommended that the project proceed to field trials and test roads were constructed in Dallas and Adair counties in Iowa. Soda ash dispersed bentonite solutions can be field mixed and applied with conventional spray distribution equipment. A maximum of 1.5% bentonite(by weight of aggregate)can be applied at one time. Higher applications would have to be staged allowing the excess moisture to evaporate between applications. Construction of higher application treatments can be accomplished by adding dry bentonite to the surfacing material and then by dry road mixing. The soda ash water solution can then be spray applied and the treated surfacing material wet mixed by motor graders to a consistency of 3 to 4 inch slump concrete. Two motor graders working in tandem can provide rapid mixing for both methods of construction. Calcium and magnesium chloride treatments are 2 to 3 times more effective in dust reduction in the short term (3-4 months) but are prone to washboarding and potholing due to maintenance restrictions. Bentonite treatment at the 2-3% level is estimated to provide a 30-40% dust reduction over the long term(18-24 months). Normal maintenance blading operations can be used on bentonite treated areas. Vehicle braking characteristics are not adversely affected up to the 3.0% treatment level. The bentonite appears to be functioning as a banding agent to bind small particulates to larger particles and is acting to agglomerate fine particles of limestone. This bonding capability appears recoverable from environmental effects of winter, and from alternating wet and dry periods. The bentonite appears to be able to interact with new applications of limestone maintenance material and maintains a dust reduction capability. Soda ash dispersed bentonite treatment is approximately 10 times more cost effective per percent dust reduction than conventional chloride treatments with respect to time. However,the disadvantage is that there is not the initial dramatic reduction in dust generation as with the chloride treatment. Although dust is reduced 30-40% after treatment there is still dust being generated and the traveling public or residents may not perceive the reduction.
Resumo:
This research project was directed at laboratory and field evaluation of sodium montmorillonite clay (Bentonite) as a dust palliative for limestone surfaced secondary roads. It was postulated that the electrically charged surfaces (negative) of the clay particles could interact with the charged surfaces (positive) of the limestone and act as a bonding agent to agglomerate fine (-#200) particulates, and also to bond the fine particulates to larger (+#200) limestone particles. One mile test roads were constructed in Tama, Appanoose, and Hancock counties in Iowa using Bentonite treatment levels (by weight of aggregate) ranging from 3.0 to 12.0%. Construction was accomplished by adding dry Bentonite to the surfacing material and then dry road mixing. The soda ash/water solution (dispersing agent) was spray applied and the treated surfacing material wet mixed by motor graders to a consistency of 2 to 3 inch slump concrete. Two motor graders working in tandem provided rapid mixing. Following wet mixing the material was surface spread and compacted by local traffic. Quantitative and qualitative periodic evaluations and testing of the test roads was conducted with respect to dust generation, crust development, roughness, and braking characteristics. As the Bentonite treatment level increased dust generation decreased. From a cost/benefit standpoint, an optimum level of treatment is about 8% (by weight of aggregate). For roads with light traffic, one application at this treatment level resulted in a 60-70% average dust reduction in the first season, 40-50% in the second season, and 20-30% in the third season. Crust development was rated at two times better than untreated control sections. No discernible trend was evident with respect to roughness. There was no evident difference in any of the test sections with respect to braking distance and braking handling characteristics, under wet surface conditions compared to the control sections. Chloride treatments are more effective in dust reduction in the short term (3-4 months). Bentonite treatment is capable of dust reduction over the long term (2-3 seasons). Normal maintenance blading operations can be used on Bentonite treated areas. Soda ash dispersed Bentonite treatment is estimated to be more than twice as cost effective per percent dust reduction than conventional chloride treatments, with respect to time. However, the disadvantage is that there is not the initial dramatic reduction in dust generation as with the chloride treatment. Although dust is reduced significantly after treatment there is still dust being generated. Video evidence indicates that the dust cloud in the Bentonite treated sections does not rise as high, or spread as wide as the cloud in the untreated section. It also settles faster than the cloud in the untreated section. This is considered important for driving safety of following traffic, and for nuisance dust invasion of residences and residential areas. The Bentonite appears to be functioning as a bonding agent.
Resumo:
The design of satisfactory supporting and expansion devices for highway bridges is a problem which has concerned bridge design engineers for many years. The problems associated with these devices have been emphasized by the large number of short span bridges required by the current expanded highway program of expressways and interstate highways. The initial objectives of this investigation were: (1) To review and make a field study of devices used for the support of bridge superstructures and for provision of floor expansion; (2) To analyze the forces or factors which influence the design and behavior of supporting devices and floor expansion systems; and (3) To ascertain the need for future research particularly on the problems of obtaining more economical and efficient supporting and expansion devices, and determining maximum allowable distance between such devices. The experimental portion was conducted to evaluate one of the possible simple and economical solutions to the problems observed in the initial portion. The investigation reported herein is divided into four major parts or phases as follows: (1) A review of literature; (2) A survey by questionnaire of design practice of a number of state highway departments and consulting firms; (3) Field observation of existing bridges; and, (4) An experimental comparison of the dynamic behavior of rigid and elastomeric bearings.
Resumo:
As of December 31, 1970 there were 57,270 miles of Local Secondary roads and 32,958 miles of Farm to Market roads in the Iowa secondary road system. The Local Secondary system carried a traffic load of 2,714,180 daily vehicle miles, accounting for 32% of all traffic in the secondary system. For all Local Secondary roads having some form of surfacing, 98% were surfaced with gravel or crushed stone. During the 1970 construction year 335 miles of surfaced roads were constructed in the Local Secondary system with 78% being surfaced with gravel or crushed stone. The total maintenance expenditure for all secondary roads in Iowa during 1970 amounted to $40,086,091. Of this, 42%, or $17,020,332, was spent for aggregate replacement on existing gravel or crushed stone roads with an additional 31% ($12,604,456) being spent on maintenance other than resurfacing. This amounts to 73% of the total maintenance budget and are the largest two maintenance expenditure items out of a list of 10 ranging from bridges to drainage assessments. The next largest item was 7%, for maintenance of existing flexible bases. Three concurrent phases of study were included in this project: (1) laboratory screenings studies of various additives thought to have potential for long-lasting dust palliation, soil additive strength, durability, and additive retention potential; (2) test road construction using those additives that indicated promise for performance-serviceability usage; and (3) observations and tests of constructed sections for evaluation of the additive's contribution to performance and serviceability as well as the relationship to initial costs.