4 resultados para dual-mode vibration
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Iowa Division of Criminal and Juvenile Justice Planning recently released a report summarizing its evaluation of the Dual Diagnosis Offender Program (DDOP) administered by the First Judicial District Department of Correctional Services.
Resumo:
The Iowa Department of Transportation has noticed an increase in the occurrence of excessively vibrated portland cement concrete (PCC) pavements. The overconsolidation of PCC pavements can be observed in several sections of PCC highways across the state of Iowa. Also, excessive vibration is believed to be a factor in the premature deterioration of several pavements in Iowa. To address the problem of excessive vibration, a research project was conducted to document the vibratory practices of PCC slipform paving in Iowa and determine the effect of vibration on the air content of pavement. The primary factors studied were paver speed, vibrator frequency, and air content relative to the location of the vibrator. The study concluded that the Iowa Department of Transportation specification of 5000 and 8000 vibrations per minute (vpm) for slipform pavers is effective for normal paver speeds observed on the three test paving projects. Excessive vibration was clearly identified on one project where a vibrator frequency was found to be 12,000 vpm. When the paver speed was reduced to half the normal speed, hard air contents indicated that excessive vibration was beginning to occur in the localized area immediately surrounding the vibrator at a frequency of 8000 vpm. Analysis of variance testing indicated many variables and interactions to be significant at a 95% confidence level; however, the variables and interactions that were found to be significant varied from project to project. This affirms the complexity of the process for consolidating PCC.
Resumo:
The Iowa Department of Transportation has discovered an increase in the occurrence of excessively vibrated portland cement concrete (PCC) pavements. The overconsolidation of PCC pavements has been observed in several projects across the state. Overconsolidation is also believed to be a factor in acceleration of premature deterioration of at least two pavement projects in Iowa. To address the problem, a research project in 1995 documented the vibratory practices of PCC slipform paving in Iowa in order to determine the effect of vibration on consolidation and air content of pavement. Paver speed, vibrator frequency, and air content relative to the location of the vibrator were studied. The study concluded that the Iowa Department of Transportation specification of 5,000 to 8,000 vibrations per minute (vpm) for slipform pavers is effective for normal paver speeds on the three projects that were examined. Excessive vibration was clearly identified on one project where a vibrator frequency of 12,000 vpm was discovered. When the paver speed was reduced to half the normal speed, hard air contents indicate that excessive vibration was beginning to occur in the localized area immediately surrounding the vibrator at a frequency of 8,000 vpm. The study also indicates that the radius of influence of the vibrators is smaller than has been claimed.
Resumo:
The primary objective of this project was to determine the effect of bridge width on deck cracking in bridges. Other parameters, such as bridge skew, girder spacing and type, abutment type, pier type, and number of bridge spans, were also studied. To achieve the above objectives, one bridge was selected for live-load and long-term testing. The data obtained from both field tests were used to calibrate a three-dimensional (3D) finite element model (FEM). Three different types of loading—live loading, thermal loading, and shrinkage loading—were applied. The predicted crack pattern from the FEM was compared to the crack pattern from bridge inspection results. A parametric study was conducted using the calibrated FEM. The general conclusions/recommendations are as follows: -- Longitudinal and diagonal cracking in the deck near the abutment on an integral abutment bridge is due to the temperature differences between the abutment and the deck. Although not likely to induce cracking, shrinkage of the deck concrete may further exacerbate cracks developed from thermal effects. -- Based upon a limited review of bridges in the Iowa DOT inventory, it appears that, regardless of bridge width, longitudinal and diagonal cracks are prevalent in integral abutment bridges but not in bridges with stub abutments. -- The parametric study results show that bridge width and skew have minimal effect on the strain in the deck bridge resulting from restrained thermal expansion. -- Pier type, girder type, girder spacing, and number of spans also appear to have no influence on the level of restrained thermal expansion strain in the deck near the abutment.