4 resultados para creep feeding

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The feeder animal price is a derivative in the sense that its value depends upon the price of animals for the consumption market. It also depends upon the biological growth technology and feed costs. Daily maintenance costs are of particular interest to the husbander because they can be avoided through accelerated feeding. In this paper, the optimal feeding path under equilibrium feeder animal prices is established. This analysis is used to gain a better understanding of feeding decisions, regulation in feedstuff markets, and the consequences of genetic innovations. It is shown that days on feed can increase or decrease with a genetic innovation or other improvement in feed conversion efficiency. The structure of comparative prices for feeder animals at different weights, the early slaughter decision, and equilibrium in feeder animal markets are also developed. Feeder animal prices can increase over a weight interval if biological feed efficiency parameters are low over the interval.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is Part 3 of a study of creep and resilient modulus testing of hot mix asphalt concrete. The creep and resilient modulus testing in Part 1 showed the improved load carrying characteristics of crushed particles. Cores from pavements drilled in Part 2 exhibited a poor correlation with rutting and creep/resilient modulus on pavement with a range of rut depths. The objective of Part 3 was to determine the relationship of creep and resilient modulus for 1) Marshall specimens from laboratory mixing for mix design; 2) Marshall specimens from construction plant mixing; and 3) cores drilled from the hot mixed asphalt pavement. The creep and resilient modulus data from these three sources exhibited substantial variations. No meaningful correlations of the results from these three sources were obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Iowa Department of Transportation began creep and resilient modulus testing of asphalt concrete mixtures in 1989. Part 1 of this research reported in January 1990 was a laboratory study of hot mix asphalt (HMA) mixtures made with O, 30, 60, 85 and 100% crushed gravel, crushed limestone and crushed quartzite combined with uncrushed sand and gravel. Creep test results from Marshall specimens related well to the percent of crushed particles and the perceived resistance to rutting. The objective of this research, part 2, was to determine if there was a meaningful correlation between pavement rut depth and the resilient modulus or the creep resistance factor. Four and six inch diameter cores were drilled from rutted primary and interstate pavements and interstate pavements with design changes intended to resist rutting. The top 2 1/2 inches of each core, most of which was surface course, was used for creep and resilient modulus testing. There is a good correlation between the resilient modulus of four and six inch diameter cores. Creep resistance factors of four and six inch diameter cores also correlated well. There is a poor correlation between resilient modulus and the creep resistance factor. The rut depth per million 18,000 pound equivalent single axle loadings (ESAL) for these pavements did not correlate well with either the resilient modulus or the creep resistance factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is concerned with the prediction of the long-time creep and shrinkage behavior of concrete. It is divided into three main areas. l. The development of general prediction methods that can be used by a design engineer when specific experimental data are not available. 2. The development of prediction methods based on experimental data. These methods take advantage of equations developed in item l, and can be used to accurately predict creep and shrinkage after only 28 days of data collection. 3. Experimental verification of items l and 2, and the development of specific prediction equations for four sand-lightweight aggregate concretes tested in the experimental program. The general prediction equations and methods are developed in Chapter II. Standard Equations to estimate the creep of normal weight concrete (Eq. 9), sand-lightweight concrete (Eq. 12), and lightweight concrete (Eq. 15) are recommended. These equations are developed for standard conditions (see Sec. 2. 1) and correction factors required to convert creep coefficients obtained from equations 9, 12, and 15 to valid predictions for other conditions are given in Equations 17 through 23. The correction factors are shown graphically in Figs. 6 through 13. Similar equations and methods are developed for the prediction of the shrinkage of moist cured normal weight concrete (Eq. 30}, moist cured sand-lightweight concrete (Eq. 33}, and moist cured lightweight concrete (Eq. 36). For steam cured concrete the equations are Eq. 42 for normal weight concrete, and Eq. 45 for lightweight concrete. Correction factors are given in Equations 47 through 52 and Figs., 18 through 24. Chapter III summarizes and illustrates, by examples, the prediction methods developed in Chapter II. Chapters IV and V describe an experimental program in which specific prediction equations are developed for concretes made with Haydite manufactured by Hydraulic Press Brick Co. (Eqs. 53 and 54}, Haydite manufactured by Buildex Inc. (Eqs. 55 and 56), Haydite manufactured by The Cater-Waters Corp. (Eqs. 57 and 58}, and Idealite manufactured by Idealite Co. (Eqs. 59 and 60). General prediction equations are also developed from the data obtained in the experimental program (Eqs. 61 and 62) and are compared to similar equations developed in Chapter II. Creep and Shrinkage prediction methods based on 28 day experimental data are developed in Chapter VI. The methods are verified by comparing predicted and measured values of the long-time creep and shrinkage of specimens tested at the University of Iowa (see Chapters IV and V) and elsewhere. The accuracy obtained is shown to be superior to other similar methods available to the design engineer.