7 resultados para crash
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Iowa crash history of distracted drivers by use of phone or other devices.
Resumo:
Iowa motorcycle crash history for the State of Iowa, 1906-2014
Resumo:
This study evaluated the safety impact of the Safety Edge for construction projects in 2010 and 2011 in Iowa to assess the effectiveness of the treatment in reducing crashes.
Resumo:
The historically-reactive approach to identifying safety problems and mitigating them involves selecting black spots or hot spots by ranking locations based on crash frequency and severity. The approach focuses mainly on the corridor level without taking the exposure rate (vehicle miles traveled) and socio-demographics information of the study area, which are very important in the transportation planning process, into consideration. A larger study analysis unit at the Transportation Analysis Zone (TAZ) level or the network planning level should be used to address the needs of development of the community in the future and incorporate safety into the long-range transportation planning process. In this study, existing planning tools (such as the PLANSAFE models presented in NCHRP Report 546) were evaluated for forecasting safety in small and medium-sized communities, particularly as related to changes in socio-demographics characteristics, traffic demand, road network, and countermeasures. The research also evaluated the applicability of the Empirical Bayes (EB) method to network-level analysis. In addition, application of the United States Road Assessment Program (usRAP) protocols at the local urban road network level was investigated. This research evaluated the applicability of these three methods for the City of Ames, Iowa. The outcome of this research is a systematic process and framework for considering road safety issues explicitly in the small and medium-sized community transportation planning process and for quantifying the safety impacts of new developments and policy programs. More specifically, quantitative safety may be incorporated into the planning process, through effective visualization and increased awareness of safety issues (usRAP), the identification of high-risk locations with potential for improvement, (usRAP maps and EB), countermeasures for high-risk locations (EB before and after study and PLANSAFE), and socio-economic and demographic induced changes at the planning-level (PLANSAFE).
Resumo:
The Highway Safety Manual (HSM) is the compilation of national safety research that provides quantitative methods for analyzing highway safety. The HSM presents crash modification functions related to freeway work zone characteristics such as work zone duration and length. These crash modification functions were based on freeway work zones with high traffic volumes in California. When the HSM-referenced model was calibrated for Missouri, the value was 3.78, which is not ideal since it is significantly larger than 1. Therefore, new models were developed in this study using Missouri data to capture geographical, driver behavior, and other factors in the Midwest. Also, new models for expressway and rural two-lane work zones that barely were studied in the literature were developed. A large sample of 20,837 freeway, 8,993 expressway, and 64,476 rural two-lane work zones in Missouri was analyzed to derive 15 work zone crash prediction models. The most appropriate samples of 1,546 freeway, 1,189 expressway, and 6,095 rural two-lane work zones longer than 0.1 mile and with a duration of greater than 10 days were used to make eight, four, and three models, respectively. A challenging question for practitioners is always how to use crash prediction models to make the best estimation of work zone crash count. To solve this problem, a user-friendly software tool was developed in a spreadsheet format to predict work zone crashes based on work zone characteristics. This software selects the best model, estimates the work zone crashes by severity, and converts them to monetary values using standard crash estimates. This study also included a survey of departments of transportation (DOTs), Federal Highway Administration (FHWA) representatives, and contractors to assess the current state of the practice regarding work zone safety. The survey results indicate that many agencies look at work zone safety informally using engineering judgment. Respondents indicated that they would like a tool that could help them to balance work zone safety across projects by looking at crashes and user costs.
Resumo:
A fatality is considered "crash-related" when death occurs within 30 days of a crash. Because complex crash investigations can delay the official report of fatalities, the numbers for the most current months are preliminary and can change considerably.
Resumo:
Building on previous research, the goal of this project was to identify significant influencing factors for the Iowa Department of Transportation (DOT) to consider in future updates of its Instructional Memorandum (I.M.) 3.213, which provides guidelines for determining the need for traffic barriers (guardrail and bridge rail) at secondary roadway bridges—specifically, factors that might be significant for the bridge rail rating system component of I.M. 3.213. A literature review was conducted of policies and guidelines in other states and, specifically, of studies related to traffic barrier safety countermeasures at bridges in several states. In addition, a safety impact study was conducted to evaluate possible non-driver-related behavior characteristics of crashes on secondary road structures in Iowa using road data, structure data, and crash data from 2004 to 2013. Statistical models (negative binomial regression) were used to determine which factors were significant in terms of crash volume and crash severity. The study found that crashes are somewhat more frequent on or at bridges possessing certain characteristics—traffic volume greater than 400 vehicles per day (vpd) (paved) or greater than 50 vpd (unpaved), bridge length greater than 150 ft (paved) or greater than 35 ft (unpaved), bridge width narrower than its approach (paved) or narrower than 20 ft (unpaved), and bridges older than 25 years (both paved and unpaved). No specific roadway or bridge characteristic was found to contribute to more serious crashes. The study also confirmed previous research findings that crashes with bridges on secondary roads are rare, low-severity events. Although the findings of the study support the need for appropriate use of bridge rails, it concludes that prescriptive guidelines for bridge rail use on secondary roads may not be necessary, given the limited crash expectancy and lack of differences in crash expectancy among the various combinations of explanatory characteristics.