13 resultados para compression reinforcement
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. Characterization of slope failures is complicated, because the factors affecting slope stability can be difficult to discern and measure, particularly soil shear strength parameters. While in the past extensive research has been conducted on slope stability investigations and analysis, this research consists of field investigations addressing both the characterization and reinforcement of such slope failures. The current research focuses on applying an infrequently-used testing technique comprised of the Borehole Shear Test (BST). This in-situ test rapidly provides effective (i.e., drained) shear strength parameter values of soil. Using the BST device, fifteen Iowa slopes (fourteen failures and one proposed slope) were investigated and documented. Particular attention was paid to highly weathered shale and glacial till soil deposits, which have both been associated with slope failures in the southern Iowa drift region. Conventional laboratory tests including direct shear tests, triaxial compression tests, and ring shear tests were also performed on undisturbed and reconstituted soil samples to supplement BST results. The shear strength measurements were incorporated into complete evaluations of slope stability using both limit equilibrium and probabilistic analyses. The research methods and findings of these investigations are summarized in Volume 1 of this report. Research details of the independent characterization and reinforcement investigations are provided in Volumes 2 and 3, respectively. Combined, the field investigations offer guidance on identifying the factors that affect slope stability at a particular location and also on designing slope reinforcement using pile elements for cases where remedial measures are necessary. The research findings are expected to benefit civil and geotechnical engineers of government transportation agencies, consultants, and contractors dealing with slope stability, slope remediation, and geotechnical testing in Iowa.
Resumo:
Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. While in the past extensive research has been conducted on slope stability investigations and analysis, this current research study consists of field investigations addressing both the characterization and reinforcement of such slope failures. While Volume I summarizes the research methods and findings of this study, Volume II provides procedural details for incorporating an infrequently-used testing technique, borehole shear tests, into practice. Fifteen slopes along Iowa highways were investigated, including thirteen slides (failed slopes), one unfailed slope, and one proposed embankment slope (the Sugar Creek Project). The slopes are mainly comprised of either clay shale or glacial till, and are generally gentle and of small scale, with slope angle ranging from 11 deg to 23 deg and height ranging from 6 to 23 m. Extensive field investigations and laboratory tests were performed for each slope. Field investigations included survey of slope geometry, borehole drilling, soil sampling, in-situ Borehole Shear Testing (BST) and ground water table measurement. Laboratory investigations mainly comprised of ring shear tests, soil basic property tests (grain size analysis and Atterberg limits test), mineralogy analyses, soil classifications, and natural water contents and density measurements on the representative soil samples from each slope. Extensive direct shear tests and a few triaxial compression tests and unconfined compression tests were also performed on undisturbed soil samples for the Sugar Creek Project. Based on the results of field and lab investigations, slope stability analysis was performed on each of the slopes to determine the possible factors resulting in the slope failures or to evaluate the potential slope instabilities using limit equilibrium methods. Deterministic slope analyses were performed for all the slopes. Probabilistic slope analysis and sensitivity study were also performed for the slope of the Sugar Creek Project. Results indicate that while the in-situ test rapidly provides effective shear strength parameters of soils, some training may be required for effective and appropriate use of the BST. Also, it is primarily intended to test cohesive soils and can produce erroneous results in gravelly soils. Additionally, the quality of boreholes affects test results, and disturbance to borehole walls should be minimized before test performance. A final limitation of widespread borehole shear testing may be its limited availability, as only about four to six test devices are currently being used in Iowa. Based on the data gathered in the field testing, reinforcement investigations are continued in Volume III.
Resumo:
Soil slope instability concerning highway infrastructure is an ongoing problem in Iowa, as slope failures endanger public safety and continue to result in costly repair work. Volume I of this current study summarizes research methods and findings, while Volume II provides procedural details for incorporating into practice an infrequently-used testing technique–borehole shear tests. Volume III of this study of field investigation of fifteen slopes in Iowa demonstrates through further experimental testing how lateral forces develop along stabilizing piles to resist slope movements. Results establish the feasibility of an alternative stabilization approach utilizing small-diameter pile elements. Also, a step-by-step procedure that can be used by both state and county transportation agencies to design slope reinforcement using slender piles is documented. Initial evidence of the efficiency and cost-effectiveness of stabilizing nuisance slope failures with grouted micropiles is presented. Employment of the remediation alternative is deemed more appropriate for stabilizing shallow slope failures. Overall, work accomplished in this research study included completing a comprehensive literature review on the state of the knowledge of slope stability and slope stabilization, the preparation and performance of fourteen full-scale pile load tests, the analysis of load test results, and the documentation of a design methodology for implementing the technology into current practices of slope stabilization. Recommendations for further research include monitoring pilot studies of slope reinforcement with grouted micropiles, supplementary experimental studies, and advanced numerical studies.
Resumo:
The feasibility of substituting fibercomposite (FC) (thermoset) pavement dowels for steel pavement dowels was investigated in this research project. Load transfer capacity, flexural capacity, and material properties were examined. The objectives of Part 1 of this final report included the shear behavior and strength deformations of FC dowel bars without aging. Part 2 will contain the aging effects. This model included the effects of modulus of elasticity for the pavement dowel and concrete, dowel diameter, subgrade stiffness, and concrete compressive strength. An experimental investigation was carried out to establish the modulus of dowel support which is an important parameter for the analysis of dowels. The experimental investigation included measured deflections, observed behavioral characteristics, and failure mode observations. An extensive study was performed on various shear testing procedures. A modified Iosipescu shear method was selected for the test procedure. Also, a special test frame was designed and fabricated for this procedure. The experimental values of modulus of support for shear and FC dowels were used for arriving at the critical stresses and deflections for the theoretical model developed. Different theoretical methods based on analyses suggested by Timoshenko, Friberg, Bradbury, and Westergaard were studied and a comprehensive theoretical model was developed. The fibercomposite dowels were found to provide strengths and behavioral characteristics that appear promising as a potential substitute for steel dowels.
Resumo:
This research, initiated in October 1992, was located at the intersection of Blairs Ferry Road and Lindale Drive in the City of Marion. The wall is located on the southeast corner of the intersection. Reinforced retaining wall construction started with a five inch base of roadstone with one inch of sand for leveling purposes. One and one-half to two feet of one inch clean stone was placed behind the blocks. A four inch perforated plastic pipe was placed approximately nine inches from the bottom of the one inch clean stone. The Tenswal, tensar geogrid was placed at every third layer. Openings in the Tenswal are hooked over plastic dowels in the blocks. The tenswal reaches from the face of the wall back 5' to 8'. The cost for constructing this wall was $124,400. The wall has performed well for the past five years. The wall improves the aesthetics of a high traffic volume intersection of an urban area. Many positive comments have been received by the city regarding its appearance. The City of Marion has been pleased with the wall and has used this type of wall on subsequent projects.
Resumo:
This is the second part of the final report submitted to the Iowa Department of Transportation. Part 1 contained a comparison of unaged fiber composite and steel dowels and derivation of the appropriate theoretical model for analyzing the results. Part 2 of this final report covers the theoretical and experimental models for accelerated aging of fiber composite reinforcing bars and dowels cast in a concrete environment. Part 2 contains results from testing of unaged and aged fiber composite dowels and steel dowels, in addition to unaged and aged fiber composite reinforcing bars. Additional tests have been performed on unaged dowels (both steel and fibercomposite) to verify results from Part 1 and to keep the testing program consistent. Slight modifications have been made to the dowel specimens presented in Part 1. These modifications are noted in the Section 3.4 of this report. The flexural modulus of elasticity for the FC dowel bar given in Part 1 of the final report (Table 3. 2) was for the incorrect structural shape (non-circular cross section). The value is corrected and given in Part 2 of the final report (Table 3.4 for the.modulus of elasticity supplied by the manufacturer, and Tables 3. 5 and 3. 6 for experimentally determined modulus of elasticities) • The value in Part 1 was not used for any analysis of the FC dowel bars.
Resumo:
Transverse joints are placed in portland cement concrete pavements to control the development of random cracking due to stresses induced by moisture and thermal gradients and restrained slab movement. These joints are strengthened through the use of load transfer devices, typically dowel bars, designed to transfer load across the joint from one pavement slab to the next. Epoxy coated steel bars are the materials of choice at the present time, but have experienced some difficulties with resistance to corrosion from deicing salts. The research project investigated the use of alternative materials, dowel size and spacing to determine the benefits and limitations of each material. In this project two types of fiber composite materials, stainless steel solid dowels and epoxy coated dowels were tested for five years in side by side installation in a portion of U.S. 65 near Des Moines, Iowa, between 1997 and 2002. The work was directed at analyzing the load transfer characteristics of 8-in. vs. 12-in. spacing of the dowels and the alternative dowel materials, fiber composite (1.5- and 1.88-in. diameter) and stainless steel (1.5-in. diameter), compared to typical 1.5-in. diameter epoxy-coated steel dowels placed on 12-in. spacing. Data were collected biannually within each series of joints and variables in terms of load transfer in each lane (outer wheel path), visual distress, joint openings, and faulting in each wheel path. After five years of performance the following observations were made from the data collected. Each of the dowel materials is performing equally in terms of load transfer, joint movement and faulting. Stainless steel dowels are providing load transfer performance equal to or greater than epoxy-coated steel dowels at the end of five years. Fiber reinforced polymer (FRP) dowels of the sizes and materials tested should be spaced no greater than 8 in. apart to achieve comparable performance to epoxy coated dowels. No evidence of deterioration due to road salts was identified on any of the products tested. The relatively high cost of stainless steel solid and FRP dowels was a limitation at the time of this study conclusion. Work is continuing with the subject materials in laboratory studies to determine the proper shape, spacing, chemical composition and testing specification to make the FRP and stainless (clad or solid) dowels a viable alternative joint load transfer material for long lasting portland cement concrete pavements.
Resumo:
The 1982 cost of a two-inch asphaltic concrete overlay, with fabric, was an average of 85% of the cost of a three-inch overlay (see attached calculations). A structural number can be assigned to the extra inch of overlay, whereas it is doubtful that any number can be assigned to the fabric. The observations made on the projects in this report leave little reason to be optimistic on the use of fabrics under asphalt overlays. This is especially true of the Floyd, Dallas and Clarke county projects. A great amount of fabric is being used nationwide for this purpose, probably more from sales promotion than from actual documented performance. Full scale field testing is continuing each time a project is let utilizing fabric reinforcement under asphaltic concrete overlays. It has already become apparent that the use of fabrics in AC overlays is not always cost effective.
Resumo:
This report describes a study to evaluate Geopier® soil reinforcement technology in transportation construction. Three projects requiring settlement control were chosen for evaluation—an embankment foundation, a box culvert, and a bridge approach fill. For each project, construction observations, in situ soil testing, laboratory material characterization, and performance monitoring were carried out. For the embankment foundation project, Geopier elements were installed within and around an abutment footprint for the new I-35 overpass at the US Highway 5/Interstate 35 interchange in Des Moines, Iowa. Although the main focus of this investigation was to evaluate embankment foundation reinforcement using Geopier elements, a stone column reinforced soil provided an opportunity to compare systems. In situ testing included cone penetration tests (CPTs), pressuremeter tests (PMTs), Ko stepped blade tests, and borehole shear tests (BSTs), as well as laboratory material testing. Comparative stiffness and densities of Geopier elements and stone columns were evaluated based on full-scale modulus load tests and standard penetration tests. Vibrating wire settlement cells and total stress cells were installed to monitor settlement and stress concentration on the reinforcing elements and matrix soil. Settlement plates were also monitored by conventional optical survey methods. Results show that the Geopier system and the stone columns performed their intended functions. The second project involved settlement monitoring of a 4.2 m wide x 3.6 m high x 50 m long box culvert constructed beneath a bridge on Iowa Highway 191 south of Neola, Iowa. Geopier elements were installed to reduce total and differential settlement while ensuring the stability of the existing bridge pier foundations. Benefits of the box culvert and embankment fill included (1) ease of future roadway expansion and (2) continual service of the roadway throughout construction. Site investigations consisted of in situ testing including CPTs, PMTs, BSTs, and dilatometer tests. Consolidated drained triaxial compression tests, unconsolidated undrained triaxial compression test, oedometer tests, and Atterberg limit tests were conducted to define strength and consolidation parameters and soil index properties for classification. Vibrating wire settlement cells, total stress cells, and piezometers were installed for continuous monitoring during and after box culvert construction and fill placement. This project was successful at controlling settlement of the box culvert and preventing downdrag of the bridge foundations, but could have been enhanced by reducing the length of Geopier elements at the ends of the box culvert. This would have increased localized settlement while reducing overall differential settlement. The third project involved settlement monitoring of bridge approach fill sections reinforced with Geopier elements. Thirty Geopier elements, spaced 1.8 m apart in six rows of varying length, were installed on both sides of a new bridge on US Highway 18/218 near Charles City, Iowa. Based on the results of this project, it was determined that future applications of Geopier soil reinforcement should consider extending the elements deeper into the embankment foundation fill, not just the fill itself.
Resumo:
There is an ongoing drive towards improvements and achieving success in effective and long term sealing of portland cement concrete pavement contraction joints. A variety of joint sealing products and procedures have been applied in Iowa in search of improvements in seal performance. Hot poured rubberized asphalt products were mainly used for sealing all joints in earlier years for highways. In the 1980s, silicone sealant products were becoming popular, especially for the major highways. As a high level of sealant performance was not achieved from silicones in Iowa conditions, other sealing products were tried. Preformed neoprene compression seals are being tried as a substitution for silicone sealants. Due to high costs of materials and installation with neoprene seals, the search for improvements through other joint sealing products and procedures continued. An agreement was made with Phoenix, North America, Inc., to provide and install preformed Ethylene Propylene Diene Monomer (EPDM) compression joint seals. The research site was a 600 ft (183 m) test section of northbound I-29 in Pottawattamie County, Iowa. Seal installation was done August 20, 1992. Seal performance has been good over the past seven years and the seals are still showing no significant signs of decreasing performance.
Resumo:
The corrosion of steel reinforcement in an aging highway infrastructure is a major problem currently facing the transportation engineering community. In the United States alone, maintenance and replacement costs for deficient bridges are measured in billions of dollars. The application of corrosion-resistant steel reinforcement as an alternative reinforcement to existing mild steel reinforced concrete bridge decks has potential to mitigate corrosion problems, due to the fundamental properties associated with the materials. To investigate corrosion prevention through the use of corrosion-resistant alloys, the performance of corrosion resistance of MMFX microcomposite steel reinforcement, a high-strength, high-chromium steel reinforcement, was evaluated. The study consisted of both field and laboratory components conducted at the Iowa State University Bridge Engineering Center to determine whether MMFX reinforcement provides superior corrosion resistance to epoxy-coated mild steel reinforcement in bridge decks. Because definitive field evidence of the corrosion resistance of MMFX reinforcement may require several years of monitoring, strict attention was given to investigating reinforcement under accelerated conditions in the laboratory, based on typical ASTM and Rapid Macrocell accelerated corrosion tests. After 40 weeks of laboratory testing, the ASTM ACT corrosion potentials indicate that corrosion had not initiated for either MMFX or the as-delivered epoxy-coated reinforcement. Conversely, uncoated mild steel specimens underwent corrosion within the fifth week, while epoxy-coated reinforcement specimens with induced holidays underwent corrosion between 15 and 30 weeks. Within the fifth week of testing, the Rapid Macrocell ACT produced corrosion risk potentials that indicate active corrosion for all reinforcement types tested. While the limited results from the 40 weeks of laboratory testing may not constitute a prediction of life expectancy and life-cycle cost, a procedure is presented herein to determine life expectancy and associated life-cycle costs.
Resumo:
The function of dowel bars is the transfer of a load across the transverse joint from one pavement slab to the adjoining slab. In the past, these transfer mechanisms have been made of steel. However, pavement damage such as loss of bonding, deterioration, hollowing, cracking and spalling start to occur when the dowels begin to corrode. A significant amount of research has been done to evaluate alternative types of materials for use in the reinforcement of concrete pavements. Initial findings have indicated that stainless steel and fiber composite materials possess properties, such as flexural strength and corrosion resistance, that are equivalent to the Department of Transportation specifications for standard steel, 1 1/2 inch diameter dowel bars. Several factors affect the load transfer of dowels; these include diameter, alignment, grouting, bonding, spacing, corrosion resistance, joint spacing, slab thickness and dowel embedment length. This research is directed at the analysis of load transfer based on material type and dowel spacing. Specifically, this research is directed at analyzing the load transfer characteristics of: (a) 8-inch verses 12-inch spacing, and (b) alternative dowel material compared to epoxy coated steel dowels, will also be analyzed. This report documents the installation of the test sections, placed in 1997. Dowel material type and location are identified. Construction observations and limitations with each dowel material are shown.
Resumo:
Behavior of granular material subjected to repeated load triaxial compression tests is characterized by a model based on rate process theory. Starting with the Arrhenius equation from chemical kinetics, the relationship of temperature, shear stress, normal stress and volume change to deformation rate is developed. The proposed model equation includes these factors as a product of exponential terms. An empirical relationship between deformation and the cube root of the number of stress applications at constant temperature and normal stress is combined with the rate equation to yield an integrated relationship of temperature, deviator stress, confining pressure and number of deviator stress applications to axial strain. The experimental program consists of 64 repeated load triaxial compression tests, 52 on untreated crushed stone and 12 on the same crushed stone material treated with 4% asphalt cement. Results were analyzed with multiple linear regression techniques and show substantial agreement with the model equations. Experimental results fit the rate equation somewhat better than the integrated equation when all variable quantities are considered. The coefficient of shear temperature gives the activation enthalpy, which is about 4.7 kilocalories/mole for untreated material and 39.4 kilocalories/mole for asphalt-treated material. This indicates the activation enthalpy is about that of the pore fluid. The proportionality coefficient of deviator stress may be used to measure flow unit volume. The volumes thus determined for untreated and asphalt-treated material are not substantially different. This may be coincidental since comparison with flow unit volumes reported by others indicates flow unit volume is related to gradation of untreated material. The flow unit volume of asphalt-treated material may relate to asphalt cement content. The proposed model equations provide a more rational basis for further studies of factors affecting deformation of granular materials under stress similar to that in pavement subjected to transient traffic loads.