25 resultados para block ciphers, integral cryptanalysis, Serpent, Noekeon, PRESENT
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The issue of effectively holding juveniles accountable for criminal behavior is a topic of public concern and debate. Congress created the Juvenile Accountability Incentive Block Grant (JAIBG) program and appropriated new federal funds through the Office of Juvenile Justice and Delinquency Prevention (OJJDP). The goals of the program are to reduce juvenile delinquency, improve the juvenile justice system, and increase accountability for juvenile offenders.
Resumo:
The use of precast, prestressed concrete piles in the foundation of bridge piers has long been recognized as a valuable option for bridge owners and designers. However, the use of these precast, prestressed concrete piles in integral abutment bridges has not been widespread because of concerns over pile flexibility and the potential for concrete cracking and deterioration of the prestressing strands due to long-term exposure to moisture. This report presents the details of the first integral abutment bridge in the state of Iowa that utilized precast, prestressed concrete piles in the abutment. The bridge, which was constructed in Tama County in 2000, consists of a 110 ft. long, 30 ft. wide, single-span PC girder superstructure with a left-side-ahead 20º skew angle. The bridge was instrumented with a variety of strain gages, displacement sensors, and thermocouples to monitor and help in the assessment of structural behavior. The results of this monitoring are presented, and recommendations are made for future application of precast, prestressed concrete piles in integral abutment bridges. In addition to the structural monitoring data, this report presents the results of a survey questionnaire that had been mailed to each of the 50 state DOT chief bridge engineers to ascertain their current practices for precast, prestressed concrete piles and especially the application of these piles in integral abutment bridges.
Resumo:
Report on the Community Development Block Grant Program administered by the Southern Iowa Council of Governments (Council) for the period October 1, 2003 through September 30, 2007
Resumo:
Report on the Community Development Block Grant and Home Investment Partnerships Programs administered by the Region XII Council of Governments for the period July 1, 2005 through November 21, 2008
Resumo:
Young women in the juvenile justice system present with characteristics and experiences that differentiate them from their male counterparts. As such, the juvenile justice system in Iowa must consider these factors if it is to effectively and efficiently impact recidivism, rehabilitation and public safety. Data reveal the following trends: All youth in the juvenile justice system experience a significantly higher rate of child maltreatment than do youth in the general population. Additionally, young women have a distinctly higher percentage of reported sexual abuse. Young women commit primarily non-violent offenses, with shoplifting and running away being the only two areas where they exceed young men in number. Young women are held in detention for a substantially higher percentage of misdemeanor versus felony offenses than young men. Young women of color, particularly African American females, are far more likely to come into contact with the juvenile justice system. Additionally, arrests of minority females have increased during the same time frame as arrests of Caucasian females have decreased. The general type of offense committed by young women is against public order (i.e. alcohol related violations, disorderly conduct) or property (i.e. shoplifting), though young women with subsequent charges of a violent nature are likely to have had violent offenses initially as well. Historically, young women have been a smaller segment of the juvenile justice population. They remain so today. Consequently, they are easy to overlook. But Iowa’s response to them is no less important. Perhaps, because they are fewer in number, our system can have a true and meaningful influence, with prevention of further penetration into both the juvenile and adult systems being the ultimate goal. The Iowa Task Force on Young Women recommends the following measures to facilitate movement toward that goal: 1. Facilities and programs striving to provide the most effective and efficient services to young women will opt for single gender environments with female responsive programming that includes components to address trauma. 2. All institutions and agencies that work with females involved in the juvenile justice system and which receive state funding should be required to provide annual female responsive training to their employees. Training should be research based, progressive, ongoing and result in an implementation plan. 3. As detention reform proceeds, gender and the disproportionate number of females in detention for misdemeanor offenses must be an integral part of policy and decision making discussions including any recommendations for solutions to be implemented. 4. As research, data and planning progresses related to disproportionate minority contact with the juvenile system, the needs of girls of color be given equal consideration. Specifically, assessment tools must be without race/ethnic bias and they must also be female responsive.
Resumo:
Report on the Iowa Early Intervention Block Grant Program administered by the Department of Education for the period July 1, 2005 through June 30, 2010
Resumo:
The Iowa Department of Transportation has long recognized that approach slab pavements of integral abutment bridges are prone to settlement and cracking, which manifests as the “bump at the end of the bridge”. A commonly recommended solution is to integrally attach the approach slab to the bridge abutment. Two different approach slabs, one being precast concrete and the other being cast-inplace concrete, were integrally connected to side-by-side bridges and investigated. The primary objective of this investigation was to evaluate the approach slab performance and the impacts the approach slabs have on the bridge. To satisfy the research needs, the project scope involved a literature review, survey of Midwest Department of Transportation current practices, implementing a health monitoring system on the bridge and approach slab, interpreting the data obtained during the evaluation, and conducting periodic visual inspections. Based on the information obtained from the testing the following general conclusions were made: The integral connection between the approach slabs and the bridges appear to function well with no observed distress at this location and no relative longitudinal movement measured between the two components; Tying the approach slab to the bridge appears to impact the bridge; The two different approach slabs, the longer precast slab and the shorter cast-in-place slab, appear to impact the bridge differently; The measured strains in the approach slabs indicate a force exists at the expansion joint and should be taken into consideration when designing both the approach slab and the bridge; The observed responses generally followed an annual cyclic and/or short term cyclic pattern over time.
Resumo:
Audit report on the Community Development Block Grants program for the City of Brooklyn, Iowa for the year ended June 30, 2012
Resumo:
Key factors that provide context for the state's Maternal and Child Health (MCH) annual report and state plan are highlighted in this overview. This section briefly outlines Iowa's demographics, population changes, economic indicators and significant public initiatives. Major strategic planning efforts affecting development of program activities are also identified.
Resumo:
For more than 80 years, visitors to the Iowa State Historical, Memorial, and Art Building were treated to the state’s collection of historic documents, literature, portraits, and historical, geological, and archeological artifacts. Those who visited might have memories of the spectacular sand paintings by Iowan Andrew Clemens, the variety of taxidermy Iowa animals, the pioneer Conestoga wagon in the basement, the biplane hanging from the dome ceiling, the odd display by the medical library of things removed from stomachs, or the Native American display on the third floor. This booklet is a look back at the origins of the museum. It includes some of the Historical Department reports, legislation passed by the general assembly, newspaper and magazine articles, and photographs pertaining to the museum and library. It is not intended to be an exhaustive review and documentation of displays and exhibits. It is a brief overview of the building’s history and some photographs that may bring back memories, for some, of a field trip as a student. This booklet has been created from a variety of source materials: photographs, newspaper articles, and various reports. The following have contributed: State Library of Iowa, Iowa State Historical Society, the Iowa Judicial Branch, Susan Wallace, Helen Dagley, Barb Corson, Jerome Thompson, Pam Rees, Georgiann Fischer, and Jason Mrachina.
Resumo:
Approach slab pavement at integral abutment (I-A) bridges are prone to settlement and cracking, which has been long recognized by the Iowa Department of Transportation (DOT). A commonly recommended solution is to integrally attach the approach slab to the bridge abutment. This study sought to supplement a previous project by instrumenting, monitoring, and analyzing the behavior of an approach slab tied to a integral abutment bridge. The primary objective of this investigation was to evaluate the performance of the approach slab. To satisfy the research needs, the project scope involved reviewing a similar previous study, implementing a health monitoring system on the approach slab, interpreting the data obtained during the evaluation, and conducting periodic visual inspections of the bridge and approach slab. Based on the information obtained from the testing, the following general conclusions were made: the integral connection between the approach slab and the bridge appears to function well with no observed distress at this location and no relative longitudinal movement measured between the two components; the measured strains in the approach slabs indicate a force exists at the expansion joint and should be taken into consideration when designing both the approach slab and the bridge and the observed responses generally followed an annual cyclic and/or short term cyclic pattern over time; the expansion joint at one side of the approach slab does not appear to be functioning as well as elsewhere; much larger frictional forces were observed in this study compared to the previous study.
Resumo:
Expansion joints increase both the initial cost and the maintenance cost of bridges. Integral abutment bridges provide an attractive design alternative because expansion joints are eliminated from the bridge itself. However, the piles in these bridges are subjected to horizontal movement as the bridge expands and contracts during temperature changes. The objective of this research was to develop a method of designing piles for these conditions. Separate field tests simulating a pile and a bridge girder were conducted for three loading cases: (1) vertical load only, (2) horizontal displacement of pile head only, and (3) combined horizontal displacement of pile head with subsequent vertical load. Both tests (1) and (3) reached the same ultimate vertical load, that is, the horizontal displacement had no effect on the vertical load capacity. Several model tests were conducted in sand with a scale factor of about 1:10. Experimental results from both the field and model tests were used to develop the vertical and horizontal load-displacement properties of the soil. These properties were input into the finite element computer program Integral Abutment Bridge Two-Dimensional (IAB2D), which was developed under a previous research contract. Experimental and analytical results compared well for the test cases. Two alternative design methods, both based upon the American Association of State Highway and Transportation Officials (AASHTO) Specification, were developed. Alternative One is quite conservative relative to IAB2D results and does not permit plastic redistribution of forces. Alternative Two is also conservative when compared to IAB2D, but plastic redistribution is permitted. To use Alternative Two, the pile cross section must have sufficient inelastic rotation capacity before local buckling occurs. A design example for a friction pile and an end-bearing pile illustrates both alternatives.
Resumo:
Since integral abutment bridges decrease the initial and maintenance costs of bridges, they provide an attractive alternative for bridge designers. The objective of this project is to develop rational and experimentally verified design recommendations for these bridges. Field testing consisted of instrumenting two bridges in Iowa to monitor air and bridge temperatures, bridge displacements, and pile strains. Core samples were also collected to determine coefficients of thermal expansion for the two bridges. Design values for the coefficient of thermal expansion of concrete are recommended, as well as revised temperature ranges for the deck and girders of steel and concrete bridges. A girder extension model is developed to predict the longitudinal bridge displacements caused by changing bridge temperatures. Abutment rotations and passive soil pressures behind the abutment were neglected. The model is subdivided into segments that have uniform temperatures, coefficients of expansion, and moduli of elasticity. Weak axis pile strains were predicted using a fixed-head model. The pile is idealized as an equivalent cantilever with a length determined by the surrounding soil conditions and pile properties. Both the girder extension model and the fixed-head model are conservative for design purposes. A longitudinal frame model is developed to account for abutment rotations. The frame model better predicts both the longitudinal displacement and weak axis pile strains than do the simpler models. A lateral frame model is presented to predict the lateral motion of skewed bridges and the associated strong axis pile strains. Full passive soil pressure is assumed on the abutment face. Two alternatives for the pile design are presented. Alternative One is the more conservative and includes thermally induced stresses. Alternative Two neglects thermally induced stresses but allows for the partial formation of plastic hinges (inelastic redistribution of forces). Ductility criteria are presented for this alternative. Both alternatives are illustrated in a design example.
Resumo:
Nationally, there are questions regarding the design, fabrication, and erection of horizontally curved steel girder bridges due to unpredicted girder displacements, fit-up, and locked-in stresses. One reason for the concerns is that up to one-quarter of steel girder bridges are being designed with horizontal curvature. There is also an urgent need to reduce bridge maintenance costs by eliminating or reducing deck joints, which can be achieved by expanding the use of integral abutments to include curved girder bridges. However, the behavior of horizontally curved bridges with integral abutments during thermal loading is not well known nor understood. The purpose of this study was to investigate the behavior of horizontal curved bridges with integral abutment (IAB) and semi-integral abutment bridges (SIAB) with a specific interest in the response to changing temperatures. The long-term objective of this effort is to establish guidelines for the use of integral abutments with curved girder bridges. The primary objective of this work was to monitor and evaluate the behavior of six in-service, horizontally curved, steel-girder bridges with integral and semi-integral abutments. In addition, the influence of bridge curvature, skew and pier bearing (expansion and fixed) were also part of the study. Two monitoring systems were designed and applied to a set of four horizontally curved bridges and two straight bridges at the northeast corner of Des Moines, Iowa—one system for measuring strains and movement under long term thermal changes and one system for measuring the behavior under short term, controlled live loading. A finite element model was developed and validated against the measured strains. The model was then used to investigate the sensitivity of design calculations to curvature, skew and pier joint conditions. The general conclusions were as follows: (1) There were no measurable differences in the behavior of the horizontally curved bridges and straight bridges studied in this work under thermal effects. For preliminary member sizing of curved bridges, thermal stresses and movements in a straight bridge of the same length are a reasonable first approximation. (2) Thermal strains in integral abutment and semi-integral abutment bridges were not noticeably different. The choice between IAB and SIAB should be based on life – cycle costs (e.g., construction and maintenance). (3) An expansion bearing pier reduces the thermal stresses in the girders of the straight bridge but does not appear to reduce the stresses in the girders of the curved bridge. (4) An analysis of the bridges predicted a substantial total stress (sum of the vertical bending stress, the lateral bending stress, and the axial stress) up to 3 ksi due to temperature effects. (5) For the one curved integral abutment bridge studied at length, the stresses in the girders significantly vary with changes in skew and curvature. With a 10⁰ skew and 0.06 radians arc span length to radius ratio, the curved and skew integral abutment bridges can be designed as a straight bridge if an error in estimation of the stresses of 10% is acceptable.
Resumo:
The highway departments of all fifty states were contacted to find the extent of application of integral abutment bridges, to survey the different guidelines used for analysis and design of integral abutment bridges, and to assess the performance of such bridges through the years. The variation in design assumptions and length limitations among the various states in their approach to the use of integral abutments is discussed. The problems associated with lateral displacements at the abutment, and the solutions developed by the different states for most of the ill effects of abutment movements are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure was developed and used to study piling stresses and pile-soil interaction in integral abutment bridges. The finite element idealization consists of beam-column elements with geometric and material nonlinearities for the pile and nonlinear springs for the soil. An idealized soil model (modified Ramberg-Osgood model) was introduced in this investigation to obtain the tangent stiffness of the nonlinear spring elements. Several numerical examples are presented in order to establish the reliability of the finite element model and the computer software developed. Three problems with analytical solutions were first solved and compared with theoretical solutions. A 40 ft H pile (HP 10 X 42) in six typical Iowa soils was then analyzed by first applying a horizontal displacement (to simulate bridge motion) and no rotation at the top and then applying a vertical load V incrementally until failure occurred. Based on the numerical results, the failure mechanisms were generalized to be of two types: (a) lateral type failure and (b) vertical type failure. It appears that most piles in Iowa soils (sand, soft clay and stiff clay) failed when the applied vertical load reached the ultimate soil frictional resistance (vertical type failure). In very stiff clays, however, the lateral type failure occurs before vertical type failure because the soil is sufficiently stiff to force a plastic hinge to form in the pile as the specified lateral displacement is applied. Preliminary results from this investigation showed that the vertical load-carrying capacity of H piles is not significantly affected by lateral displacements of 2 inches in soft clay, stiff clay, loose sand, medium sand and dense sand. However, in very stiff clay (average blow count of 50 from standard penetration tests), it was found that the vertical load carrying capacity of the H pile is reduced by about 50 percent for 2 inches of lateral displacement and by about 20 percent for lateral displacement of 1 inch. On the basis of the preliminary results of this investigation, the 265-feet length limitation in Iowa for integral abutment concrete bridges appears to be very conservative.