6 resultados para atmospheric discharges
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This report describes a statewide study conducted to develop main-channel slope (MCS) curves for 138 selected streams in Iowa with drainage areas greater than 100 square miles. MCS values determined from the curves can be used in regression equations for estimating flood frequency discharges. Multi-variable regression equations previously developed for two of the three hydrologic regions defined for Iowa require the measurement of MCS. Main-channel slope is a difficult measurement to obtain for large streams using 1:24,000-scale topographic maps. The curves developed in this report provide a simplified method for determining MCS values for sites located along large streams in Iowa within hydrologic Regions 2 and 3. The curves were developed using MCS values quantified for 2,058 selected sites along 138 selected streams in Iowa. A geographic information system (GIS) technique and 1:24,000-scale topographic data were used to quantify MCS values for the stream sites. The sites were selected at about 5-mile intervals along the streams. River miles were quantified for each stream site using a GIS program. Data points for river-mile and MCS values were plotted and a best-fit curve was developed for each stream. An adjustment was applied to all 138 curves to compensate for differences in MCS values between manual measurements and GIS quantification. The multi-variable equations for Regions 2 and 3 were developed using manual measurements of MCS. A comparison of manual measurements and GIS quantification of MCS indicates that manual measurements typically produce greater values of MCS compared to GIS quantification. Median differences between manual measurements and GIS quantification of MCS are 14.8 and 17.7 percent for Regions 2 and 3, respectively. Comparisons of percentage differences between flood-frequency discharges calculated using MCS values of manual measurements and GIS quantification indicate that use of GIS values of MCS for Region 3 substantially underestimate flood discharges. Mean and median percentage differences for 2- to 500-year recurrence-interval flood discharges ranged from 5.0 to 5.3 and 4.3 to 4.5 percent, respectively, for Region 2 and ranged from 18.3 to 27.1 and 12.3 to 17.3 percent for Region 3. The MCS curves developed from GIS quantification were adjusted by 14.8 percent for streams located in Region 2 and by 17.7 percent for streams located in Region 3. Comparisons of percentage differences between flood discharges calculated using MCS values of manual measurements and adjusted-GIS quantification for Regions 2 and 3 indicate that the flood-discharge estimates are comparable. For Region 2, mean percentage differences for 2- to 500-year recurrence-interval flood discharges ranged between 0.6 and 0.8 percent and median differences were 0.0 percent. For Region 3, mean and median differences ranged between 5.4 to 8.4 and 0.0 to 0.3 percent, respectively. A list of selected stream sites presented with each curve provides information about the sites including river miles, drainage areas, the location of U.S. Geological Survey stream flowgage stations, and the location of streams Abstract crossing hydro logic region boundaries or the Des Moines Lobe landforms region boundary. Two examples are presented for determining river-mile and MCS values, and two techniques are presented for computing flood-frequency discharges.
Resumo:
Drainage-basin and channel-geometry multiple-regression equations are presented for estimating design-flood discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at stream sites on rural, unregulated streams in Iowa. Design-flood discharge estimates determined by Pearson Type-III analyses using data collected through the 1990 water year are reported for the 188 streamflow-gaging stations used in either the drainage-basin or channel-geometry regression analyses. Ordinary least-squares multiple-regression techniques were used to identify selected drainage-basin and channel-geometry regions. Weighted least-squares multiple-regression techniques, which account for differences in the variance of flows at different gaging stations and for variable lengths in station records, were used to estimate the regression parameters. Statewide drainage-basin equations were developed from analyses of 164 streamflow-gaging stations. Drainage-basin characteristics were quantified using a geographic-information-system (GIS) procedure to process topographic maps and digital cartographic data. The significant characteristics identified for the drainage-basin equations included contributing drainage area, relative relief, drainage frequency, and 2-year, 24-hour precipitation intensity. The average standard errors of prediction for the drainage-basin equations ranged from 38.6% to 50.2%. The GIS procedure expanded the capability to quantitatively relate drainage-basin characteristics to the magnitude and frequency of floods for stream sites in Iowa and provides a flood-estimation method that is independent of hydrologic regionalization. Statewide and regional channel-geometry regression equations were developed from analyses of 157 streamflow-gaging stations. Channel-geometry characteristics were measured on site and on topographic maps. Statewide and regional channel-geometry regression equations that are dependent on whether a stream has been channelized were developed on the basis of bankfull and active-channel characteristics. The significant channel-geometry characteristics identified for the statewide and regional regression equations included bankfull width and bankfull depth for natural channels unaffected by channelization, and active-channel width for stabilized channels affected by channelization. The average standard errors of prediction ranged from 41.0% to 68.4% for the statewide channel-geometry equations and from 30.3% to 70.0% for the regional channel-geometry equations. Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates.
Resumo:
The primary reason for using steam in the curing of concrete is to produce a high early strength. This high early strength is very desirable to the manufacturers of precast and prestressed concrete units, which often require expensive forms or stress beds. They want to remove the forms and move the units to storage yards as soon as possible. The minimum time between casting and moving the units is usually governed by the strength of the concrete. Steam curing accelerates the gain in strength at early ages, but the uncontrolled use of steam may seriously affect the growth in strength at later ages. The research described in this report was prompted by the need to establish realistic controls and specifications for the steam curing of pretensioned, prestressed concrete bridge beams and concrete culvert pipe manufactured in central plants. The complete project encompasses a series of laboratory and field investigations conducted over a period of approximately three years.
Resumo:
A statewide study was conducted to develop regression equations for estimating flood-frequency discharges for ungaged stream sites in Iowa. Thirty-eight selected basin characteristics were quantified and flood-frequency analyses were computed for 291 streamflow-gaging stations in Iowa and adjacent States. A generalized-skew-coefficient analysis was conducted to determine whether generalized skew coefficients could be improved for Iowa. Station skew coefficients were computed for 239 gaging stations in Iowa and adjacent States, and an isoline map of generalized-skew-coefficient values was developed for Iowa using variogram modeling and kriging methods. The skew map provided the lowest mean square error for the generalized-skew- coefficient analysis and was used to revise generalized skew coefficients for flood-frequency analyses for gaging stations in Iowa. Regional regression analysis, using generalized least-squares regression and data from 241 gaging stations, was used to develop equations for three hydrologic regions defined for the State. The regression equations can be used to estimate flood discharges that have recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years for ungaged stream sites in Iowa. One-variable equations were developed for each of the three regions and multi-variable equations were developed for two of the regions. Two sets of equations are presented for two of the regions because one-variable equations are considered easy for users to apply and the predictive accuracies of multi-variable equations are greater. Standard error of prediction for the one-variable equations ranges from about 34 to 45 percent and for the multi-variable equations range from about 31 to 42 percent. A region-of-influence regression method was also investigated for estimating flood-frequency discharges for ungaged stream sites in Iowa. A comparison of regional and region-of-influence regression methods, based on ease of application and root mean square errors, determined the regional regression method to be the better estimation method for Iowa. Techniques for estimating flood-frequency discharges for streams in Iowa are presented for determining ( 1) regional regression estimates for ungaged sites on ungaged streams; (2) weighted estimates for gaged sites; and (3) weighted estimates for ungaged sites on gaged streams. The technique for determining regional regression estimates for ungaged sites on ungaged streams requires determining which of four possible examples applies to the location of the stream site and its basin. Illustrations for determining which example applies to an ungaged stream site and for applying both the one-variable and multi-variable regression equations are provided for the estimation techniques.
Resumo:
A statewide study was performed to develop regional regression equations for estimating selected annual exceedance- probability statistics for ungaged stream sites in Iowa. The study area comprises streamgages located within Iowa and 50 miles beyond the State’s borders. Annual exceedanceprobability estimates were computed for 518 streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data through 2010. The estimation of the selected statistics included a Bayesian weighted least-squares/generalized least-squares regression analysis to update regional skew coefficients for the 518 streamgages. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low flows. Also, geographic information system software was used to measure 59 selected basin characteristics for each streamgage. Regional regression analysis, using generalized leastsquares regression, was used to develop a set of equations for each flood region in Iowa for estimating discharges for ungaged stream sites with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. A total of 394 streamgages were included in the development of regional regression equations for three flood regions (regions 1, 2, and 3) that were defined for Iowa based on landform regions and soil regions. Average standard errors of prediction range from 31.8 to 45.2 percent for flood region 1, 19.4 to 46.8 percent for flood region 2, and 26.5 to 43.1 percent for flood region 3. The pseudo coefficients of determination for the generalized leastsquares equations range from 90.8 to 96.2 percent for flood region 1, 91.5 to 97.9 percent for flood region 2, and 92.4 to 96.0 percent for flood region 3. The regression equations are applicable only to stream sites in Iowa with flows not significantly affected by regulation, diversion, channelization, backwater, or urbanization and with basin characteristics within the range of those used to develop the equations. These regression equations will be implemented within the U.S. Geological Survey StreamStats Web-based geographic information system tool. StreamStats allows users to click on any ungaged site on a river and compute estimates of the eight selected statistics; in addition, 90-percent prediction intervals and the measured basin characteristics for the ungaged sites also are provided by the Web-based tool. StreamStats also allows users to click on any streamgage in Iowa and estimates computed for these eight selected statistics are provided for the streamgage.
Resumo:
Traditionally, the Iowa Department of Transportation has used the Iowa Runoff Chart and single-variable regional-regression equations (RREs) from a U.S. Geological Survey report (published in 1987) as the primary methods to estimate annual exceedance-probability discharge (AEPD) for small (20 square miles or less) drainage basins in Iowa. With the publication of new multi- and single-variable RREs by the U.S. Geological Survey (published in 2013), the Iowa Department of Transportation needs to determine which methods of AEPD estimation provide the best accuracy and the least bias for small drainage basins in Iowa. Twenty five streamgages with drainage areas less than 2 square miles (mi2) and 55 streamgages with drainage areas between 2 and 20 mi2 were selected for the comparisons that used two evaluation metrics. Estimates of AEPDs calculated for the streamgages using the expected moments algorithm/multiple Grubbs-Beck test analysis method were compared to estimates of AEPDs calculated from the 2013 multivariable RREs; the 2013 single-variable RREs; the 1987 single-variable RREs; the TR-55 rainfall-runoff model; and the Iowa Runoff Chart. For the 25 streamgages with drainage areas less than 2 mi2, results of the comparisons seem to indicate the best overall accuracy and the least bias may be achieved by using the TR-55 method for flood regions 1 and 3 (published in 2013) and by using the 1987 single-variable RREs for flood region 2 (published in 2013). For drainage basins with areas between 2 and 20 mi2, results of the comparisons seem to indicate the best overall accuracy and the least bias may be achieved by using the 1987 single-variable RREs for the Southern Iowa Drift Plain landform region and for flood region 3 (published in 2013), by using the 2013 multivariable RREs for the Iowan Surface landform region, and by using the 2013 or 1987 single-variable RREs for flood region 2 (published in 2013). For all other landform or flood regions in Iowa, use of the 2013 single-variable RREs may provide the best overall accuracy and the least bias. An examination was conducted to understand why the 1987 single-variable RREs seem to provide better accuracy and less bias than either of the 2013 multi- or single-variable RREs. A comparison of 1-percent annual exceedance-probability regression lines for hydrologic regions 1–4 from the 1987 single-variable RREs and for flood regions 1–3 from the 2013 single-variable RREs indicates that the 1987 single-variable regional-regression lines generally have steeper slopes and lower discharges when compared to 2013 single-variable regional-regression lines for corresponding areas of Iowa. The combination of the definition of hydrologic regions, the lower discharges, and the steeper slopes of regression lines associated with the 1987 single-variable RREs seem to provide better accuracy and less bias when compared to the 2013 multi- or single-variable RREs; better accuracy and less bias was determined particularly for drainage areas less than 2 mi2, and also for some drainage areas between 2 and 20 mi2. The 2013 multi- and single-variable RREs are considered to provide better accuracy and less bias for larger drainage areas. Results of this study indicate that additional research is needed to address the curvilinear relation between drainage area and AEPDs for areas of Iowa.