69 resultados para ash content

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (ASR). The available alkali test, which is commonly used to measure fly ash alkali, takes approximately 35 days for execution and reporting. Hence, in many instances the fly ash has already been incorporated into concrete before the test results are available. This complicates the job of the fly ash marketing agencies and it leads to disputes with fly ash users who often are concerned with accepting projects that contain materials that fail to meet specification limits. The research project consisted of a lab study and a field study. The lab study focused on the available alkali test and how fly ash alkali content impacts common performance tests (mortar-bar expansion tests). Twenty-one fly ash samples were evaluated during the testing. The field study focused on the inspection and testing of selected, well documented pavement sites that contained moderately reactive fine aggregate and high-alkali fly ash. A total of nine pavement sites were evaluated. Two of the sites were control sites that did not contain fly ash. The results of the lab study indicated that the available alkali test is prone to experimental errors that cause poor agreement between testing labs. A strong (linear) relationship was observed between available alkali content and total alkali content of Class C fly ash. This relationship can be used to provide a quicker, more precise method of estimating the available alkali content. The results of the field study failed to link the use of high-alkali fly ash with the occurrence of ASR in the various concrete sites. Petrographic examination of the pavement cores indicated that Wayland sand is an ASR-sensitive aggregate. This was in good agreement with Iowa DOT field service records. It was recommended that preventative measures should be used when this source of sand is used in concrete mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objectives of this research project were: 1. Determine and recommend solutions for problems relating to shipping, storing and batching of fly ash. 2. Establish a procedure for batching, mixing and placing uniform concrete with specified air content and consistency. 3. Demonstrate that concrete of comparable quality can be produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major objective of this research project was to investigate how Iowa fly ashes influenced the chemical durability of portland cement based materials. Chemical durability has become an area of uncertainty because of the winter application of deicer salts (rock salts) that contain a significant amount of sulfate impurities. The sulfate durability testing program consisted of monitoring portland cement-fly ash paste, mortar and concrete test specimens that had been subjected to aqueous solutions containing various concentrations of salts (both sulfate and chloride). The paste and mortar specimens were monitored for length as a function of time. The concrete test specimens were monitored for length, relative dynamic modulus and mass as a function of time. The alkali-aggregate reactivity testing program consisted of monitoring the expansion of ASTM C311 mortar bar specimens that contained three different aggregates (Pyrex glass, Oreapolis and standard Ottawa sand). The results of the sulfate durability study indicated that the paste and concrete test specimens tended to exhibit surface spalling but only very slow expansive tendencies. This suggested that the permeability of the test specimens was controlling the rate of deterioration. Concrete specimens are still being monitored because the majority of the test specimens have expanded less than 0.05%; hence, this makes it difficult to estimate the service life of the concrete test specimens or to quantify the performance of the different fly ashes that were used in the study. The results of the mortar bar studies indicated that the chemical composition of the various fly ashes did have an influence on their sulfate resistance. Typically, Clinton and Louisa fly ashes performed the best, followed by the Ottumwa, Neal 4 and then Council Bluffs fly ashes. Council Bluffs fly ash was the only fly ash that consistently reduced the sulfate resistance of the many different mortar specimens that were investigated during this study. None of the trends that were observed in the mortar bar studies have yet become evident in the concrete phase of this project. The results of the alkali-aggregate study indicated that the Oreapolis aggregate is not very sensitive to alkali attack. Two of the fly ashes, Council Bluffs and Ottumwa, tended to increase the expansion of mortar bar specimens that contained the Oreapolis aggregate. However, it was not clear if the additional expansion was due to the alkali content of the fly ash, the periclase content of the fly ash or the cristobalite content of the fly ash, since all three of these factors have been found to influence the test results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The freeze-thaw resistance of concretes was studied. Nine concrete mixes, made with five cements and cement-Class C fly ash combinations, were exposed to freeze-thaw cycling following 110 to 222 days of moist curing. Prior to the freeze-thaw cycling, the specimens were examined by a low-vacuum scanning electron microscope (SEM) for their microstructure. The influence of a wet/dry treatment was also studied. Infilling of ettringite in entrained air voids was observed in the concretes tested. The extent of the infilling depends on the period of moist curing as well as the wet/dry treatment. The concretes with 15% Class C fly ash replacement show more infilling in their air voids. It was found that the influence of the infilling on the freeze-thaw durability relates to the air spacing factor. The greater the spacing factor, the more expansion under the freeze-thaw cycling. The infilling seems to decrease effective air content and to increase effective spacing factor. The infilling also implies that the filled air voids are water-accessible. These might lead to concrete more vulnerable to the freeze-thaw attack. By combining the above results with field observations, one may conclude that the freeze-thaw damage is a factor related to premature deterioration of portland cement concrete pavements in Iowa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objectives of this research project were: 1. Determine and recommend solutions for problems relating to shipping, storing and batching of fly ash. 2. Establish a procedure for batching, mixing and placing uniform concrete with specified air content and consistency. 3. Demonstrate that concrete of comparable quality can be produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil treated with self-cementing fly ash is increasingly being used in Iowa to stabilize fine-grained pavement subgrades, but without a complete understanding of the short- and long-term behavior. To develop a broader understanding of fly ash engineering properties, mixtures of five different soil types, ranging from ML to CH, and several different fly ash sources (including hydrated and conditioned fly ashes) were evaluated. Results show that soil compaction characteristics, compressive strength, wet/dry durability, freeze/thaw durability, hydration characteristics, rate of strength gain, and plasticity characteristics are all affected by the addition of fly ash. Specifically, Iowa selfcementing fly ashes are effective at stabilizing fine-grained Iowa soils for earthwork and paving operations; fly ash increases compacted dry density and reduces the optimum moisture content; strength gain in soil-fly ash mixtures depends on cure time and temperature, compaction energy, and compaction delay; sulfur contents can form expansive minerals in soil–fly ash mixtures, which severely reduces the long-term strength and durability; fly ash increases the California bearing ratio of fine-grained soil–fly ash effectively dries wet soils and provides an initial rapid strength gain; fly ash decreases swell potential of expansive soils; soil-fly ash mixtures cured below freezing temperatures and then soaked in water are highly susceptible to slaking and strength loss; soil stabilized with fly ash exhibits increased freeze-thaw durability; soil strength can be increased with the addition of hydrated fly ash and conditioned fly ash, but at higher rates and not as effectively as self-cementing fly ash. Based on the results of this study, three proposed specifications were developed for the use of self-cementing fly ash, hydrated fly ash, and conditioned fly ash. The specifications describe laboratory evaluation, field placement, moisture conditioning, compaction, quality control testing procedures, and basis of payment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report to Margaret Thompson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report to Margaret Thompson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report to Margaret Thompson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed investigation has been conducted on core samples taken from 17 portland cement concrete pavements located in Iowa. The goal of the investigation was to help to clarify the root cause of the premature deterioration problem that has become evident since the early 1990s. Laboratory experiments were also conducted to evaluate how cement composition, mixing time, and admixtures could have influenced the occurrence of premature deterioration. The cements used in this study were selected in an attempt to cover the main compositional parameters pertinent to the construction industry in Iowa. The hardened air content determinations conducted during this study indicated that the pavements that exhibited premature deterioration often contained poor to marginal entrained-air void systems. In addition, petrographic studies indicated that sometimes the entrained-air void system had been marginal after mixing and placement of the pavement slab, while in other instances a marginal to adequate entrained-air void system had been filled with ettringite. The filling was most probably accelerated because of shrinkage cracking at the surface of the concrete pavements. The results of this study suggest that the durability—more sciecifically, the frost resistance—of the concrete pavements should be less than anticipated during the design stage of the pavements. Construction practices played a significant role in the premature deterioration problem. The pavements that exhibited premature distress also exhibited features that suggested poor mixing and poor control of aggregate grading. Segregation was very common in the cores extracted from the pavements that exhibited premature distress. This suggests that the vibrators on the paver were used to overcome a workability problem. Entrained-air voids formed in concrete mixtures experiencing these types of problems normally tend to be extremely coarse, and hence they can easily be lost during the paving process. This tends to leave the pavement with a low air content and a poor distribution of air voids. All of these features were consistent with a premature stiffening problem that drastically influenced the ability of the contractor to place the concrete mixture. Laboratory studies conducted during this project indicated that most premature stiffening problems can be directly attributed to the portland cement used on the project. The admixtures (class C fly ash and water reducer) tended to have only a minor influence on the premature stiffening problem when they were used at the dosage rates described in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of supplementary cementitious materials (SCMs), such as fly ash (FA) and slag, generally improves concrete workability, durability, and long-term strength. New trends in sustainable development of concrete infrastructure and in environmental regulations on waste disposal are spurring use of SCMs in concrete. However, use of SCM concrete is sometimes limited due to a lack of understanding about material behaviors and lack of proper specifications for its construction practice. It is believed that SCM concrete performance varies significantly with the source and proportion of the cementitious materials. SCM concrete often displays slower hydration, accompanied by slower setting and lower early-age strength, especially under cold weather conditions. The present research was conducted to have a better understanding of SCM concrete behaviors under different weather conditions. In addition to the study of the effect of SCM content on concrete set time using cementitious materials from different sources/manufacturers, further research may be needed to investigate the effects of SCM combinations on concrete flowability, air stability, cracking resistance, and durability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report to Margaret Thomson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Severe environmental conditions, coupled with the routine use of deicing chemicals and increasing traffic volume, tend to place extreme demands on portland cement concrete (PCC) pavements. In most instances, engineers have been able to specify and build PCC pavements that met these challenges. However, there have also been reports of premature deterioration that could not be specifically attributed to a single cause. Modern concrete mixtures have evolved to become very complex chemical systems. The complexity can be attributed to both the number of ingredients used in any given mixture and the various types and sources of the ingredients supplied to any given project. Local environmental conditions can also influence the outcome of paving projects. This research project investigated important variables that impact the homogeneity and rheology of concrete mixtures. The project consisted of a field study and a laboratory study. The field study collected information from six different projects in Iowa. The information that was collected during the field study documented cementitious material properties, plastic concrete properties, and hardened concrete properties. The laboratory study was used to develop baseline mixture variability information for the field study. It also investigated plastic concrete properties using various new devices to evaluate rheology and mixing efficiency. In addition, the lab study evaluated a strategy for the optimization of mortar and concrete mixtures containing supplementary cementitious materials. The results of the field studies indicated that the quality management concrete (QMC) mixtures being placed in the state generally exhibited good uniformity and good to excellent workability. Hardened concrete properties (compressive strength and hardened air content) were also satisfactory. The uniformity of the raw cementitious materials that were used on the projects could not be monitored as closely as was desired by the investigators; however, the information that was gathered indicated that the bulk chemical composition of most materials streams was reasonably uniform. Specific minerals phases in the cementitious materials were less uniform than the bulk chemical composition. The results of the laboratory study indicated that ternary mixtures show significant promise for improving the performance of concrete mixtures. The lab study also verified the results from prior projects that have indicated that bassanite is typically the major sulfate phase that is present in Iowa cements. This causes the cements to exhibit premature stiffening problems (false set) in laboratory testing. Fly ash helps to reduce the impact of premature stiffening because it behaves like a low-range water reducer in most instances. The premature stiffening problem can also be alleviated by increasing the water–cement ratio of the mixture and providing a remix cycle for the mixture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report to Margaret Thomson, Chief Clerk, about Recycled Content Plastic Bag and Soy Inks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Content outline used during the Improving Transition Outcomes Resource Mapping Workshops