3 resultados para actor-network theory ¿ peritoneal dialysis ¿ rural Indigenous Australians
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
In the administration, planning, design, and maintenance of road systems, transportation professionals often need to choose between alternatives, justify decisions, evaluate tradeoffs, determine how much to spend, set priorities, assess how well the network meets traveler needs, and communicate the basis for their actions to others. A variety of technical guidelines, tools, and methods have been developed to help with these activities. Such work aids include design criteria guidelines, design exception analysis methods, needs studies, revenue allocation schemes, regional planning guides, designation of minimum standards, sufficiency ratings, management systems, point based systems to determine eligibility for paving, functional classification, and bridge ratings. While such tools play valuable roles, they also manifest a number of deficiencies and are poorly integrated. Design guides tell what solutions MAY be used, they aren't oriented towards helping find which one SHOULD be used. Design exception methods help justify deviation from design guide requirements but omit consideration of important factors. Resource distribution is too often based on dividing up what's available rather than helping determine how much should be spent. Point systems serve well as procedural tools but are employed primarily to justify decisions that have already been made. In addition, the tools aren't very scalable: a system level method of analysis seldom works at the project level and vice versa. In conjunction with the issues cited above, the operation and financing of the road and highway system is often the subject of criticisms that raise fundamental questions: What is the best way to determine how much money should be spent on a city or a county's road network? Is the size and quality of the rural road system appropriate? Is too much or too little money spent on road work? What parts of the system should be upgraded and in what sequence? Do truckers receive a hidden subsidy from other motorists? Do transportation professions evaluate road situations from too narrow of a perspective? In considering the issues and questions the author concluded that it would be of value if one could identify and develop a new method that would overcome the shortcomings of existing methods, be scalable, be capable of being understood by the general public, and utilize a broad viewpoint. After trying out a number of concepts, it appeared that a good approach would be to view the road network as a sub-component of a much larger system that also includes vehicles, people, goods-in-transit, and all the ancillary items needed to make the system function. Highway investment decisions could then be made on the basis of how they affect the total cost of operating the total system. A concept, named the "Total Cost of Transportation" method, was then developed and tested. The concept rests on four key principles: 1) that roads are but one sub-system of a much larger 'Road Based Transportation System', 2) that the size and activity level of the overall system are determined by market forces, 3) that the sum of everything expended, consumed, given up, or permanently reserved in building the system and generating the activity that results from the market forces represents the total cost of transportation, and 4) that the economic purpose of making road improvements is to minimize that total cost. To test the practical value of the theory, a special database and spreadsheet model of Iowa's county road network was developed. This involved creating a physical model to represent the size, characteristics, activity levels, and the rates at which the activities take place, developing a companion economic cost model, then using the two in tandem to explore a variety of issues. Ultimately, the theory and model proved capable of being used in full system, partial system, single segment, project, and general design guide levels of analysis. The method appeared to be capable of remedying many of the existing work method defects and to answer society's transportation questions from a new perspective.
Resumo:
For several years, the Iowa Department of Transportation has constructed bypasses along rural highways. Most bypasses were constructed on the state’s Commercial Industrial Network (CIN). Now that work on the CIN has been completed and the system is open to traffic, it is possible to study the impacts of bypasses. In the past, construction of highway bypasses has led community residents and business people to raise concerns about the loss of business activity. For policy development purposes, it is essential to understand the impacts that a bypass might have on safety, the community, and economics. By researching these impacts, policies can be produced to help to alleviate any negative impacts and create a better system that is ultimately more cost-effective. This study found that the use of trade area analysis does not provide proof that a bypass can positively or negatively impact the economy of a rural community. The analysis did show that, even though the population of a community may be stable for several years and per capita income is increasing, sales leakage still occurs. The literature, site visits, and data make it is apparent that a bypass can positively affect a community. Some conditions that would need to exist in order to maximize a positive impact include the installation of signage along the bypass directing travelers to businesses and services in the community, community or regional plans that include the bypass in future land development scenarios, and businesses adjusting their business plans to attract bypass users. In addition, how proactive a community is in adapting to the bypass will determine the kinds of effects felt in the community. Results of statistical safety analysis indicate that, at least when crashes are separated by severity, bypasses with at-grade accesses appear to perform more poorly than either the bypasses with fully separated accesses or with a mix of at-grade and fully separated accesses. However, the benefit in terms of improved safety of bypasses with fully separated accesses relative to bypasses with a mixed type of accesses is not statistically conclusive.