9 resultados para Wavefront-guided
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Iowa State Capitol: A Self-Guided Tour
Resumo:
The Rebuild Iowa Transition Strategy has been drafted to provide a comprehensive set of recommended action steps to help the state complete long-term recovery efforts while better preparing the state for future disasters. This report begins with a review of the 12 major Rebuild Iowa Advisory Commission (RIAC) recommendations which have guided RIO’s work, followed by a summary of the major accomplishments toward each recommendation. The identification of remaining needs and issues serves as the basis for the transition strategy. The following outlines the action steps necessary to achieve a successful transition and recovery.
Resumo:
The closing of the RIO does not mean that the recovery process is complete for Iowa families and communities. The recovery process will continue for many years to come, and the Rebuild Iowa Transition Strategy has been drafted to provide a comprehensive set of recommended action steps to help the state complete long-term recovery efforts while better preparing the state for future disasters. This report begins with a review of the twelve major Rebuild Iowa Advisory Commission (RIAC) recommendations which have guided RIO’s work, followed by a summary of the major accomplishments toward each recommendation. Complete, detailed information on all the work that has been accomplished toward the RIAC recommendations can be found in the RIO’s Quarterly Reports. The identification of remaining needs and issues serves as the basis for the transition strategy.
Resumo:
As technology evolves, vital resources shift, and the state’s population diversifies, Public Safety will have a unique opportunity to show our integrity, values, and worth to the citizens of Iowa. To take advantage of this unique moment in history, and will remain committed to, proactive and on-going strategic mapping. This strategic work will always be guided by Public Safety’s mission and core values, as well as by our responsibility to support local Police Departments and Sheriff’s Offices.
Resumo:
Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained THIS WEEK: Steamboating on the Rivers in Iowa BACKGROUND: Built at Wheeling, Virginia, in 1819, the steamboat Virginia was a small stern-wheeler of 109-132 tons, and was owned by Redick McKee, James Pemberton, and seven others. She was 118 feet long, 18 feet 10 inches beam, and her depth was 5 feet 2 inches. She had a cabin on deck but no pilot house, being guided by a tiller at the stern.
Resumo:
The Iowa State Capitol: A Self-Guided Tour with cell phone walking tour.
Resumo:
Several primary techniques have been developed through which soil aggregate road material properties may be improved. Such techniques basically involve a mechanism of creating a continuous matrix system of soil and/or aggregate particles, interlocked through the use of some additive such as portland cement, lime, or bituminous products. Details by which soils are stabilized vary greatly, but they are dependent on the type of stabilizing agent and nature of the soil, though the overall approach to stabilization has the common feature that improvement is achieved by some mechanism(s) forcing individual particles to adhere to one another. This process creates a more rigid material, most often capable of resisting the influx of water during freezing, loss of strength due to high moisture content and particle dispersion during thawing, and loss of strength due to migration of fines and/or water by capillarity and pumping. The study reported herein, took a new and relatively different approach to strengthening of soils, i.e., improvement of roadway soils and/or soil-aggregate materials by structural reinforcement with randomly oriented fibers. The purpose of the study was to conduct a laboratory and field investigation into the potential of improving (a) soil-aggregate surfaced and subgrade materials, including those that are frost-prone and/or highly moisture susceptible, and (b) localized base course materials, by uniting such materials through fibrous reinforcement. The envisioned objective of the project was the development of a simple construction technique(s) that could be (a) applied on a selective basis to specific areas having a history of poor performance, or (b) used for improvement of potential base materials prior to surfacing. Little background information on such purpose and objective was available. Though the envisioned process had similarities to fibrous reinforced concrete, and to fibrous reinforced resin composites, the process was devoid of a cementitious binder matrix and thus highly dependent on the cohesive and frictional interlocking processes of a soil and/or aggregate with the fibrous reinforcement; a condition not unlike the introduction of reinforcing bars into a concrete sand/aggregate mixture without benefit of portland cement. Thus the study was also directed to answering some fundamental questions: (1) would the technique work; (2) what type or types of fibers are effective; (3) are workable fibers commercially available; and (4) can such fibers be effectively incorporated with conventional construction equipment, and employed in practical field applications? The approach to obtaining answers to these questions, was guided by the philosophy that an understanding of basic fundamentals was essential to developing a body of engineering knowledge, that would serve as the basis for eventual development of design procedures with fibrous products for the applications previously noted.
Resumo:
The purpose of this Interstate Corridor Plan (plan) is to provide the Iowa Department of Transportation (Iowa DOT) with an initial screening and prioritization of interstate corridors/segments. This process evaluates the entire interstate system, independent of current financial constraints, using a select group of criteria weighted in terms of their relative significance. The resulting segments would then represent those areas that should be considered for further study (e.g., environmental, design, engineering), with the possibility of being considered for programming by the Iowa Transportation Commission. There was a dominant theme present in conversations with those department stakeholders who have a keen interest in the product of this planning effort. A statement that was often heard was that staff needed more information to help answer the question, “Where do we need to be looking to next, and when?” There was a strong desire to be able to use this plan to help populate that initial pool of candidate segments that would progress towards further study, as discussed below. It was this theme that framed the need for this plan and ultimately guided its development. Further study: As acknowledged at the beginning of this section, the product of this planning effort will be an initial screening and prioritization of interstate corridors/segments. While this initial screening will assist the Iowa DOT in identifying those areas that should be considered for further study, the plan will not identify specific projects or alternatives that could be directly considered as part of the programming process. Bridging the gap between this plan and the programming process are a variety of environmental, design, and engineering activities conducted by various Iowa DOT offices. It is these activities that will further refine the priority corridors/segments identified in this plan into candidate projects. In addition, should the evaluation process developed through this planning effort prove to be successful, it is possible that there will be additional applications, such as future primary system highway plans and statewide freight plans.
Resumo:
The main function of a roadway culvert is to effectively convey drainage flow during normal and extreme hydrologic conditions. This function is often impaired due to the sedimentation blockage of the culvert. This research sought to understand the mechanics of sedimentation process at multi-box culverts, and develop self-cleaning systems that flush out sediment deposits using the power of drainage flows. The research entailed field observations, laboratory experiments, and numerical simulations. The specific role of each of these investigative tools is summarized below: a) The field observations were aimed at understanding typical sedimentation patterns and their dependence on culvert geometry and hydrodynamic conditions during normal and extreme hydrologic events. b) The laboratory experiments were used for modeling sedimentation process observed insitu and for testing alternative self-cleaning concepts applied to culverts. The major tasks for the initial laboratory model study were to accurately replicate the culvert performance curves and the dynamics of sedimentation process, and to provide benchmark data for numerical simulation validation. c) The numerical simulations enhanced the understanding of the sedimentation processes and aided in testing flow cases complementary to those conducted in the model reducing the number of (more expensive) tests to be conducted in the laboratory. Using the findings acquired from the laboratory and simulation works, self-cleaning culvert concepts were developed and tested for a range of flow conditions. The screening of the alternative concepts was made through experimental studies in a 1:20 scale model guided by numerical simulations. To ensure the designs are effective, performance studies were finally conducted in a 1:20 hydraulic model using the most promising design alternatives to make sure that the proposed systems operate satisfactory under closer to natural scale conditions.