4 resultados para Water structure
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The objectives of this research project are: (1) To determine the feasibility of proportioning, mixing, placing and finishing a dense portland cement concrete in a bridge floor using conventional mixing, placing and finishing equipment. (2) To determine the economics, longevity, maintenance performance and protective qualities of a dense portland cement concrete bridge floor when using a high rangewater reducing admixture. The purpose of a high range water reducing admixture is to produce a dense, high quality concrete at a low water-cement ratio witj adequate workability. A low water-cement ratio contributes greatly to increased strength. The normal 7 day strength of untreated concrete would be expected i n 3 days using a superplasticizer. A dense concrete also has the desirable properties of excellent durability and reduced permeability. It is felt that a higher quality, denser, higher strength portland cement concrete can be produced and placed, using conventional equipment, by the addition of a high range water reducing admixture. Such a dense concrete, w i t h a water/cement ratio of approximately 0.30 to 0.35, would be expected to be much less permeable and thus retard the intrusion of chloride. With care and attention given to obtaining the design cover over steel (2% inches clear), it i s hoped that protection for the design life of the structure will be obtained. Evaluation of this experimental concrete bridge floor included chloride content and delamination testing of the concrete floor five years after construction. A comparitive evaluation o f a control section o f concrete without the water reducing admixture was conducted. Other items o f comparison include workability during construction, strength, density, water-cement ratio and chloride penetration.
Resumo:
Stream degradation is the action of deepening the stream bed and widening the banks due to the increasing velocity of water flow. Degradation is pervasive in channeled streams found within the deep to moderately deep loess regions of the central United States. Of all the streams, however, the most severe and widespread entrenchment occurs in western Iowa streams that are tributaries to the Missouri River. In September 1995 the Iowa Department of Transportation awarded a grant to Golden Hills Resource Conservation and Development, Inc. The purpose of the grant, HR-385 "Stream Stabilization in Western Iowa: Structure Evaluation and Design Manual", was to provide an assessment of the effectiveness and costs of various stabilization structures in controlling erosion on channeled streams. A review of literature, a survey of professionals, field observations and an analysis of the data recorded on fifty-two selected structures led to the conclusions presented in the project's publication, Design Manual, Streambed Degradation and Streambank Widening in Western Iowa. Technical standards and specifications for the design and construction of stream channel stabilization structures are included in the manual. Additional information on non-structural measures, monitoring and evaluation of structures, various permit requirements and further resources are also included. Findings of the research project and use and applications of the Design Manual were presented at two workshops in the Loess Hills region. Participants in these workshops included county engineers, private contractors, state and federal agency personnel, elected officials and others. The Design Manual continues to be available through Golden Hills Resource Conservation and Development.
Resumo:
The interrelation of curing time, curing temperature, strength, and reactions in lime-bentonite-water mixtures was examined. Samples were molded at constant density and moisture content and then cured for periods of from 1 to 56 days at constant temperatures that ranged from 5C to 60C. After the appropriate curing time the samples were tested for unconfined compressive strength. The broken samples were then analyzed by x-ray diffractometer and spectrophotometer to determine the identity of the reaction products present after each curing period. It was found that the strength gain of lime-clay mixtures cured at different temperatures is due to different phases of the complex reaction, lime & clay to CSH(gel) to CSH(II) to CSH(I) to tobermorite. The farther the reaction proceeds, the higher the strength. There was also evidence of lattice substitutions in the structure of the calcium silicate hydrates at curing temperatures of 50C and higher. No consistent relationship between time, temperature, strength, and the S/A ration of reaction products existed, but in order to achieve high strengths the apparent C/S ration had to be less than two. The curing temperature had an effect on the strength developed by a given amount of reacted silica in the cured lime-clay mixture, but at a given curing temperature the cured sample that had the largest amount of reacted silica gave the highest strength. Evidence was found to indicate that during the clay reaction some calcium is indeed adsorbed onto the clay structure rather than entering into a pozzolanic reaction. Finally, it was determined that it is possible to determine the amount of silica and alumina in lime-clay reaction products by spectrophotometric analysis with sufficient accuracy for comparison purposes. The spectrophotometric analysis techniques used during the investigation were simple and were not time consuming.
Resumo:
The purpose of this manual is to provide guidelines for low water stream crossings (LWSC). Rigid criteria for determining the applicability of a LWSC to a given site are not established nor is a 'cookbook" procedure for designing a LWSC presented. Because conditions vary from county to county and from site to site within the county, judgment must be applied to the suggestions contained in this manual. A LWSC is a stream crossing that will be flooded periodically and closed to traffic. Carstens (1981) has defined a LWSC as "a ford, vented ford (one having some number of culvert pipes), low water bridge, or other structure that is designed so that its hydraulic capacity will be insufficient one or more times during a year of normal rainfall." In this manual, LWSC are subdivided into these same three main types: unvented fords, vented fords and low water bridges. Within the channel banks, an unvented ford can have its road profile coincident with the stream bed or can have its profile raised some height above the stream bed.