234 resultados para Water Clarity
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
In anticipation of regulation involving numeric turbidity limit at highway construction sites, research was done into the most appropriate, affordable methods for surface water monitoring. Measuring sediment concentration in streams may be conducted a number of ways. As part of a project funded by the Iowa Department of Transportation, several testing methods were explored to determine the most affordable, appropriate methods for data collection both in the field and in the lab. The primary purpose of the research was to determine the exchangeability of the acrylic transparency tube for water clarity analysis as compared to the turbidimeter.
Resumo:
While the quality of water in Brushy Creek Lake is currently adequate, a number of factors in the watershed (the surrounding area that drains into the lake) could put that water quality at risk. Sediment from the large watershed could fill in the lake and affect water clarity. Nutrients, like nitrogen and phosphorus, could cause algae blooms and other problems. Without preventative measures, potential manure and chemical spills could harm aquatic life in the lake. Using conservation farming practices and building structures like wetlands will work to maintain and even improve the lake’s water quality. Taking steps now to implement these critical practices will help prevent water quality problems, preserving water quality for future generations.
Resumo:
In-lake management can be a critical need for water quality improvement for impaired recreation lakes. Biomanipulation practices to achieve the proper balance of predatory fish, zooplankton grazing of algae, and native aquatic vegetation can sometimes restore water clarity of turbid, nutrient enriched lakes. Lakewood leaders have a renovation plan for Lake Colchester, involving several common and three innovative practices. Lakewood is prepared to pay for proven practices, but seeks WIRB grant support to test innovations in collaboration with Iowa DNR biologists, and ISU limnologists, serving as advisors and monitors for the entire project.
Resumo:
Clear Lake, Iowa's third largest natural lake, is a premier natural resource and popular recreational destination in north central Iowa. Despite the lake's already strong recreational use, water quality concerns have not allowed the lake to reach its full potential. Clear Lake is listed on Iowa's Draft 2010 303(d) Impaired Waters List for algae, bacteria, and turbidity. Many restoration practices have been implemented to treat the algae and turbidity impairment, but few practices have been installed to treat bacteria. Reducing beach bacteria levels is a priority of the lake restoration partners. Federal, State, and local partners have invested more than $20 million in lake and watershed restoration efforts to improve water clarity and quality. These partners have a strong desire to ensure high bacteria levels at public swim beaches do not undermine the other water quality improvements. Recent bacteria source tracking completed by the State Hygienic Laboratory indicates that Canada Geese are a major contributor of bacteria loading to the Clear Lake swim beaches. Other potential sources include unpermitted septic systems in the watershed. The grant request proposes to reduce bacteria levels at Clear Lake's three public swim beaches by utilizing beach cleaner machines to remove goose waste, installing goose deterrents at the swim beaches, and continuing a septic system update grant program. These practices began to be implemented in 2011 and recent bacteria samples in 2012 are showing they can be effective if the effort is continued.
Resumo:
State Agency Audit Report State Revolving Fund - Clean Water & Drinking Programs
Resumo:
Report of Conservation Program Summary produced by Iowa Departmment of Agriculture and Land Stewardship
Resumo:
Investigative report produced by Iowa Citizens' Aide/Ombudsman
Resumo:
State Agency Audit Report
Resumo:
Designation of Co-benefits and Its Implication for Policy: Water Quality versus Carbon Sequestration in Agricultural Soils, The
Resumo:
City Audit Report
Resumo:
City Audit Report
Resumo:
Tillage and manure application practices significantly impact surface and ground water quality in Iowa and other Midwestern states. Tillage and manure application that incorporates residue and disturbs soil result in higher levels of soil erosion and surface runoff. Phosphorus and sediment loading are closely linked to the increase in soil erosion and surface water runoff. Manure application (i.e., injection or incorporation) reduces surface residue cover, which can worsen soil erosion regardless of the tillage management system being used. An integrated system approach to manure and tillage management is critical to ensure effi cient nutrient use and improvement of soil and water quality. This approach, however, requires changes in manure application technology and tillage system management to ensure the success of an integrated
Resumo:
State Audit Reports
Resumo:
Other Audit Reports - Municipal Utilities
Resumo:
Report of Conservation Program Summary produced by Iowa Departmment of Agriculture and Land Stewardship