6 resultados para Warm Mix Asphalt, laboratory characterization, fatigue, permanent deformation, CalME, pavement performance.

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portland cement concrete (PCC) pavement undergoes repeated environmental load-related deflection resulting from temperature and moisture variations across the pavement depth. This phenomenon, referred to as PCC pavement curling and warping, has been known and studied since the mid-1920s. Slab curvature can be further magnified under repeated traffic loads and may ultimately lead to fatigue failures, including top-down and bottom-up transverse, longitudinal, and corner cracking. It is therefore important to measure the “true” degree of curling and warping in PCC pavements, not only for quality control (QC) and quality assurance (QA) purposes, but also to achieve a better understanding of its relationship to long-term pavement performance. In order to better understand the curling and warping behavior of PCC pavements in Iowa and provide recommendations to mitigate curling and warping deflections, field investigations were performed at six existing sites during the late fall of 2015. These sites included PCC pavements with various ages, slab shapes, mix design aspects, and environmental conditions during construction. A stationary light detection and ranging (LiDAR) device was used to scan the slab surfaces. The degree of curling and warping along the longitudinal, transverse, and diagonal directions was calculated for the selected slabs based on the point clouds acquired using LiDAR. The results and findings are correlated to variations in pavement performance, mix design, pavement design, and construction details at each site. Recommendations regarding how to minimize curling and warping are provided based on a literature review and this field study. Some examples of using point cloud data to build three-dimensional (3D) models of the overall curvature of the slab shape are presented to show the feasibility of using this 3D analysis method for curling and warping analysis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix design process developed during the previous phase is applied for CIR-emulsion mixtures with varying emulsified asphalt contents. Dynamic modulus test, dynamic creep test, static creep test and raveling test were conducted to evaluate the short- and long-term performance of CIR-emulsion mixtures at various testing temperatures and loading conditions. A potential benefit of this research is a better understanding of CIR-emulsion material properties in comparison with those of CIR-foam material that would allow for the selection of the most appropriate CIR technology and the type and amount of the optimum stabilization material. Dynamic modulus, flow number and flow time of CIR-emulsion mixtures using CSS-1h were generally higher than those of HFMS-2p. Flow number and flow time of CIR-emulsion using RAP materials from Story County was higher than those from Clayton County. Flow number and flow time of CIR-emulsion with 0.5% emulsified asphalt was higher than CIR-emulsion with 1.0% or 1.5%. Raveling loss of CIR-emulsion with 1.5% emulsified was significantly less than those with 0.5% and 1.0%. Test results in terms of dynamic modulus, flow number, flow time and raveling loss of CIR-foam mixtures are generally better than those of CIR-emulsion mixtures. Given the limited RAP sources used for this study, it is recommended that the CIR-emulsion mix design procedure should be validated against several RAP sources and emulsion types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This special report is prepared to review durability and durability tests for paving asphalt, both in theory and in application. The report summarizes and evaluates factors related to asphalt durability, problems associated with durability study and development of durability tests, important work on durability and practical design implications concerning asphalt durability. It is a state-of-the-art report and a part of the study under HR-124, Development of Laboratory Durability Test for Asphalts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A research project entitled "Residual Stresses and Fatigue Behavior of Welded Structural Members" was conducted at the Structural Research Laboratory of the Engineering Research Institute at Iowa State University under the sponsorship of the Iowa State Highway Commission. The objective of the project was to study experimentally the fatigue behavior of flange plates in welded beam sections as influenced by different residual stress distributions which are caused by different sizes of welds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fruitful research on durability of paving asphalts may come from two approaches: The improvement of the asphalt for durability; The development of relatively rapid laboratory tests which will enable the design engineer to select or to specify an asphalt based on quality and to make a correct estimate of the service life of a selected asphalt when used in a specific paving mixture. Research Project HR-124, "Development of a Laboratory Durability Test for Asphalts," sponsored by the Iowa Highway Research Board is in the second category and was intended to be the initial stage of an overall study in the development of a durability test for paving asphalts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design number of gyrations (Ndesign) introduced by the Strategic Highway Research Program (SHRP) and used in the Superior Performing Asphalt Pavement (Superpave) mix design method has been commonly used in flexible pavement design throughout the US since 1996. Ndesign, also known as the compaction effort, is used to simulate field compaction during construction and has been reported to produce air voids that are unable to reach ultimate pavement density within the initial 2 to 3 years post-construction, potentially having an adverse impact on long-term performance. Other state transportation agencies have conducted studies validating the Ndesign for their specific regions, which resulted in modifications of the gyration effort for the various traffic levels. Validating this relationship for Iowa asphalt mix designs will lead to better correlations between mix design target voids, field voids, and performance. A comprehensive analysis of current Ndesign levels investigated the current levels with existing mixes and pavements and developed initial asphalt mix design recommendations that identify an optimum Ndesign through the use of performance data tests.