14 resultados para W. T. Fine
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Agreed upon procedures report for evaluating compliance with provisions of IowaCare (Project No 11-W-00189/7) within the Iowa Department of Human Services for the year ended June 30, 2006
Resumo:
The two volume record of the debates that occured during the thirty-nine days it took to draft the third constitution of the State of Iowa.
Resumo:
Iowa Citizen Aide - Ombudsman Office received a complaint on February 22, 2010, concerning the manner in which the mayor and several city council members for the City of Monticello (City) attempted to remove the city administrator from his position. It was alleged that the mayor and at least one council member went to the homes of other council members and sought their signatures on a letter of offer requesting the city administrator to resign or face a vote to terminate his employment. We were asked to investigate whether this action complied with Iowa’s Open Meetings Law.
Resumo:
This research investigated the effects of changing the cementitious content required at a given water-to-cement ratio (w/c) on workability, strength, and durability of a concrete mixture. An experimental program was conducted in which 64 concrete mixtures with w/c ranging between 0.35 and 0.50, cementitious content ranging from 400 to 700 per cubic yard (pcy), and containing four different supplementary cementitious material (SCM) combinations were tested. The fine-aggregate to total-aggregate ratio was fixed at 0.42 and the void content of combined aggregates was held constant for all the mixtures. Fresh (i.e., slump, unit weight, air content, and setting time) and hardened properties (i.e., compressive strength, chloride penetrability, and air permeability) were determined. The hypothesis behind this study is that when other parameters are kept constant, concrete properties such as strength, chloride penetration, and air permeability will not be improved significantly by increasing the cement after a minimum cement content is used. The study found that about 1.5 times more paste is required than voids between the aggregates to obtain a minimum workability. Below this value, water-reducing admixtures are of no benefit. Increasing paste thereafter increased workability. In addition, for a given w/c, increasing cementitious content does not significantly improve compressive strength once the critical minimum has been provided. The critical value is about twice the voids content of the aggregate system. Finally, for a given w/c, increasing paste content increases chloride penetrability and air permeability.
Resumo:
This research investigated the effects of changing the cementitious content required at a given water-to-cement ratio (w/c) on workability, strength, and durability of a concrete mixture. An experimental program was conducted in which 64 concrete mixtures with w/c ranging between 0.35 and 0.50, cementitious content ranging from 400 to 700 per cubic yard (pcy), and containing four different supplementary cementitious material (SCM) combinations were tested. The fine-aggregate to total-aggregate ratio was fixed at 0.42 and the void content of combined aggregates was held constant for all the mixtures. Fresh (i.e., slump, unit weight, air content, and setting time) and hardened properties (i.e., compressive strength, chloride penetrability, and air permeability) were determined. The hypothesis behind this study is that when other parameters are kept constant, concrete properties such as strength, chloride penetration, and air permeability will not be improved significantly by increasing the cement after a minimum cement content is used. The study found that about 1.5 times more paste is required than voids between the aggregates to obtain a minimum workability. Below this value, water-reducing admixtures are of no benefit. Increasing paste thereafter increased workability. In addition, for a given w/c, increasing cementitious content does not significantly improve compressive strength once the critical minimum has been provided. The critical value is about twice the voids content of the aggregate system. Finally, for a given w/c, increasing paste content increases chloride penetrability and air permeability.
Resumo:
The purpose of this study was to investigate the effect of cement paste quality on the concrete performance, particularly fresh properties, by changing the water-to-cementitious materials ratio (w/cm), type and dosage of supplementary cementitious materials (SCM), and airvoid system in binary and ternary mixtures. In this experimental program, a total matrix of 54 mixtures with w/cm of 0.40 and 0.45; target air content of 2%, 4%, and 8%; a fixed cementitious content of 600 pounds per cubic yard (pcy), and the incorporation of three types of SCMs at different dosages was prepared. The fine aggregate-to- total aggregate ratio was fixed at 0.42. Workability, rheology, air-void system, setting time, strength, Wenner Probe surface resistivity, and shrinkage were determined. The effects of paste variables on workability are more marked at the higher w/cm. The compressive strength is strongly influenced by the paste quality, dominated by w/cm and air content. Surface resistivity is improved by inclusion of Class F fly ash and slag cement, especially at later ages. Ternary mixtures performed in accordance with their ingredients. The data collected will be used to develop models that will be part of an innovative mix proportioning procedure.
Resumo:
For years, specifications have focused on the water to cement ratio (w/cm) and strength of concrete, despite the majority of the volume of a concrete mixture consisting of aggregate. An aggregate distribution of roughly 60% coarse aggregate and 40% fine aggregate, regardless of gradation and availability of aggregates, has been used as the norm for a concrete pavement mixture. Efforts to reduce the costs and improve sustainability of concrete mixtures have pushed owners to pay closer attention to mixtures with a well-graded aggregate particle distribution. In general, workability has many different variables that are independent of gradation, such as paste volume and viscosity, aggregate’s shape, and texture. A better understanding of how the properties of aggregates affect the workability of concrete is needed. The effects of aggregate characteristics on concrete properties, such as ability to be vibrated, strength, and resistivity, were investigated using mixtures in which the paste content and the w/cm were held constant. The results showed the different aggregate proportions, the maximum nominal aggregate sizes, and combinations of different aggregates all had an impact on the performance in the strength, slump, and box test.
Resumo:
The objective of this research was to evaluate the quality (angularity, mortar strengths and alkali-silica reactivity) of fine aggregate for Iowa portland cement concrete (PCC) pavements. Sands were obtained from 30 sources representative of fine aggregate across Iowa. The gradation, fineness modulus and mortar strengths were determined for all sands. Angularity was evaluated using a new National Aggregate Association (NAA) flow test. The NAA uncompacted void values are significantly affected by the percent of crushed particles and are a good measure of fine aggregate angularity. The alkali-silica reactivity of Iowa sands was measured by the ASTM P214 test. By P214 many Iowa sands were identified as being reactive while only two were innocuous. More research is needed on P214 because pavement performance history has shown very little alkali-silica reactivity deterioration of pavement. Six of the sands tested by P214 were evaluated using the Canadian Prism Test. None were identified as being reactive by the Canadian Prism Test.
Resumo:
Many times during the past four years we have seen ranges in the durability factor for a single coarse aggregate source that were too great to be explained by variations in the coarse aggregate alone. The durability test (ASTM C 666 Method B) as presently used is a test of the concrete system rather than that of a particular coarse aggregate. An informal study of current durability factor data indicates that w/c ratio and/or percentage of air may be critical to beam growth and durability factor. The purpose of this project, R-258, is to determine the extent w/c ratio and air content variations have on beam growth and durability factor when other factors including coarse aggregate gradation are held constant.
Resumo:
In several locations of Iowa, it is becoming more difficult to produce concrete sand consistently at a reasonable cost. Both ASTM and AASHTO have specifications for concrete sands that allow a finer, poorer graded sand than Iowa specifications. The objective of the study was to develop standard mix designs to permit the use of finer graded sand for PC concrete. Three hundred cylinders were made from five sands available in the state. Based on the results of the study, the following are recommended: (1) Create another class of concrete sand by: (a) lowering the current mortar strength ratio from 1.5 to 1.3, (b) raising the allowance for the percent passing one sieve and retained on the next from 40 to 45, and (c) including a provision that 25 to 60 percent passing the number 30 sieve is required for the sand; and (2) Modify the standard paving mixes with and without fly ash for use with the finer sand as follows: (a) 8% more cement and fly ash for B-2 to B-5 mixes, (b) 7% more cement and fly ash for A-2 to A-5 mixes, and (c) 5% more cement and fly ash for C-2 to C-5 mixes and water reduced mixes.
Resumo:
The specifications for concrete sand in Iowa have been used for many years with very good results. In several locations of the state, it is becoming more difficult to produce concrete sand consistently at a reasonable cost. Both ASTM and AASHTO have specifications for concrete sands that allow a finer, poorer graded sand than the Iowa specification. The ASTM and AASHTO specifications are based on the use of trial mix testing prior to construction. Iowa does not currently use the trial mix procedure.
Resumo:
A road safety audit was conducted for a seven-mile section of County Road W-55 in Washington County, Iowa. In 2006, the average annual daily traffic on this roadway was found to be 1,290 vehicles per day. Using crash data from 2001 to 2007, the Iowa Department of Transportation (Iowa DOT) has identified this roadway as being in the top 5% of Iowa secondary rural roads with the highest density of serious (fatal and major injury) crashes for single-vehicle run-off-road incidents. Considering these safety data, the Washington County Engineer requested that a road safety audit be conducted to identify areas with safety concerns and to recommend low-cost mitigation to address those concerns. Staff and officials from the Iowa DOT, Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Institute for Transportation, and local law enforcement and transportation agencies met to review crash data and discuss potential safety improvements to this segment of W-55. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this W-55 corridor and explain several selected mitigation strategies.
Resumo:
On October 20–21, 2009, two road safety audits were conducted in Lee County, Iowa: one for a 6 mile section of County Road X-23 from IA 2 to the south corporate limits of West Point and one for a 9.7 mile section of County Road W-62 from US 218 to IA 27. Both roads have high severe crash histories for the years of 2001 through 2008. Using these crash data, the Iowa Department of Transportation (Iowa DOT) has identified County Road X-23 as being in the top 5 percent of similar roads for run-off-road crashes. The Iowa DOT lists County Road W-62 as a high-risk rural road that has above-average crash numbers and is eligible for funding under the Federal High-Risk Rural Road Program. Considering these issues, the Lee County Engineer and Iowa DOT requested that road safety audits be conducted to address the safety concerns and to suggest possible mitigation strategies.
A Progress Report on Treating Loess, Fine Sands and Soft Limestones with Liquid Binders, HR-20, 1954
Resumo:
Certain areas of Iowa abound in loess, others contain soft limestones that are readily and cheaply available, and a large portion of the state is underlaid with sand. None of these materials is considered suitable in present practices for use in all-weather road construction. The loess is too fine and too difficult to handle; the limestones are considered too soft, and some of the harder ones unsound for this use; the sands are not naturally of the desired gradation and do not lend themselves to blending into satisfactory gradations. The purpose of this project is, therefore, to study and develop means and to determine the feasibility of using these materials, loess, fine sand, and soft limestones, either separately or in combinations in conjunction with liquid binders to produce paving mixtures applicable for all-weather road construction. Also included in the project was the development of methods of processing any of these materials, if necessary, to make them suitable for the desired purpose