8 resultados para Vine decline
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A century ago, the majority of workers were employed near their homes—on farms or in cities and towns. As industrialization increased and suburbs surrounded central cities, commuting meant going from homes in suburbs to jobs in cities. Today, there is a growing trend of workers commuting between suburbs. On any given day, 61,775 workers commute to jobs in Iowa counties other than the one in which they live. The most important reason for increased commuting has been employment growth. Rising incomes and the growth of suburbs have also been factors. In the past, the increased employment of women added to the number of commuters. Commuting patterns are a key consideration in transportation planning. In more urban states than Iowa, there is concern that the use of mass transit continues to decline. In Iowa, where so much of our commuting is between counties, private vehicles are often the only practical means of getting to and from work. On any given day, 1,155,008 single-occupancy vehicles are driven to and from jobs somewhere in Iowa. At the same time, an additional158,699 workers share rides by participating in carpools.
Resumo:
In the past century, public health has been credited with adding 25 years to life expectancy by contributing to the decline in illness and injury. Progress has been made, for example, in smoking reduction, infectious disease, and motor vehicle and workplace injuries. Besides its focus on traditional concerns such as clean water and safe food, public health is adapting to meet emerging health problems. Particular troublesome are health threats to youth: teenage pregnancies, violence, substance abuse, sexually transmitted diseases, and other conditions associated with high-risk behaviors. These threats add to burgeoning health care costs. A conservative estimate of $69 billion in medical spending could be averted through the impact of public health strategies aimed at heart disease, stroke, fatal and nonfatal occupational injuries, motor vehicle-related injuries, low birth weight, and violence. These strategies require the collaboration of many groups in the public and private sectors. Collaboration is the bedrock of public health and Healthy Iowans planning. At the core of Healthy Iowans 2000 and its successor, Healthy Iowans 2010, is the idea that all Iowans benefit when stakeholders decide on disease prevention and health promotion strategies and agree to work together on them. These strategies can improve the quality of life and hold down health care costs. The payoff for health promotion and disease prevention is not immediate, but it has long-lasting benefits. The Iowa plan is a companion to the national plan, Healthy People 2010. An initiative to improve the health of Americans, the national plan is the driving force for federal resource allocation for disease prevention and health promotion. The state plan is used in the same way. Both plans have received broad support from Republican and Democratic administrations. Community planners are using the state plan to help assess health needs and craft health improvement plans. Healthy Iowans 2010 was written at an unusual point in history – a new decade, a new century, a new millennium. The introduction was optimistic. “The 21st century,” it says, “promises to add life as well as years through improved health habits coupled with medical advances. Scientists have suggested that if these changes occur, the definition of adulthood will also change. An extraordinary number of people will live fuller, more active lives beyond that expected in the late 20th century.” At the same time, the country has spawned a new generation of health hazards. According to Dr. William Dietz of the Centers for Disease Control and Prevention (CDC), it has replaced “the diseases of deficiency with diseases of excess” (Newsweek, August 2, 1999). New threats, such as childhood overweight, can reverse progress made in the last century. This demands concerted action.
Resumo:
This study tests the theory of rationing, examining changes in household consumption behavior during the transition to a market economy in Poland, 1987–92. A model of consumption under rationing is developed and fitted to prereform quarterly data from the Polish Household Budget Survey. Virtual prices, prices at which consumers would have voluntarily chosen the rationed levels of goods, are derived for food and housing. The prereform Almost Ideal Demand System (AIDS) model with rationing is estimated. Estimates from the virtual AIDS yield plausible values for price and income elasticities. The AIDS model (without rationing) is also fitted to postreform quarterly household survey data for comparison and evaluation. When the two sets of results are compared, the impacts of rationing are consistent with the theory. Own-price elasticities for nonrationed goods are larger after the reform, and there is increased complementarity and decreased substitutability for the nonrationed goods. The results for Poland show a 75 percent decline in real household welfare over the transition and this welfare loss is one-third the value obtained using reported prices.
Resumo:
The European Union (EU) accomplished its biggest enlargement process in 2004 in terms of the number of countries, area, and population. This study focuses on the impact of enlargement, the resulting technology transfer on the grain sectors of the New Member States (NMS), and the consequent welfare implications. The study finds that EU enlargement has important implications for the EU and the NMS, but its impact on the world grain markets is minimal. The results show that producers in the NMS gain from accession because of higher prices, whereas consumers in most NMS face a welfare loss. Incorporating technology transfer into the accession increases the welfare gain of producers despite falling prices because of the larger supply shift. The loss of welfare for consumers in most NMS is lower in this case because of the decline in grain prices.
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
The FY 2006 budget we present to you today was built from the ground up and is the result of a budget process that focuses on priorities and results. Faced with difficult choices, we are heartened by the progress we have achieved with your cooperation and collaboration. Fulfilling our responsibility to Iowa children, together we have focused resources on cing class sizes and reversed an eight-year decline in test scores. As a result, Iowa students have reachieved four straight years of improved test scores, ranking among America’s best.
Resumo:
We analyze crash data collected by the Iowa Department of Transportation using Bayesian methods. The data set includes monthly crash numbers, estimated monthly traffic volumes, site length and other information collected at 30 paired sites in Iowa over more than 20 years during which an intervention experiment was set up. The intervention consisted in transforming 15 undivided road segments from four-lane to three lanes, while an additional 15 segments, thought to be comparable in terms of traffic safety-related characteristics were not converted. The main objective of this work is to find out whether the intervention reduces the number of crashes and the crash rates at the treated sites. We fitted a hierarchical Poisson regression model with a change-point to the number of monthly crashes per mile at each of the sites. Explanatory variables in the model included estimated monthly traffic volume, time, an indicator for intervention reflecting whether the site was a “treatment” or a “control” site, and various interactions. We accounted for seasonal effects in the number of crashes at a site by including smooth trigonometric functions with three different periods to reflect the four seasons of the year. A change-point at the month and year in which the intervention was completed for treated sites was also included. The number of crashes at a site can be thought to follow a Poisson distribution. To estimate the association between crashes and the explanatory variables, we used a log link function and added a random effect to account for overdispersion and for autocorrelation among observations obtained at the same site. We used proper but non-informative priors for all parameters in the model, and carried out all calculations using Markov chain Monte Carlo methods implemented in WinBUGS. We evaluated the effect of the four to three-lane conversion by comparing the expected number of crashes per year per mile during the years preceding the conversion and following the conversion for treatment and control sites. We estimated this difference using the observed traffic volumes at each site and also on a per 100,000,000 vehicles. We also conducted a prospective analysis to forecast the expected number of crashes per mile at each site in the study one year, three years and five years following the four to three-lane conversion. Posterior predictive distributions of the number of crashes, the crash rate and the percent reduction in crashes per mile were obtained for each site for the months of January and June one, three and five years after completion of the intervention. The model appears to fit the data well. We found that in most sites, the intervention was effective and reduced the number of crashes. Overall, and for the observed traffic volumes, the reduction in the expected number of crashes per year and mile at converted sites was 32.3% (31.4% to 33.5% with 95% probability) while at the control sites, the reduction was estimated to be 7.1% (5.7% to 8.2% with 95% probability). When the reduction in the expected number of crashes per year, mile and 100,000,000 AADT was computed, the estimates were 44.3% (43.9% to 44.6%) and 25.5% (24.6% to 26.0%) for converted and control sites, respectively. In both cases, the difference in the percent reduction in the expected number of crashes during the years following the conversion was significantly larger at converted sites than at control sites, even though the number of crashes appears to decline over time at all sites. Results indicate that the reduction in the expected number of sites per mile has a steeper negative slope at converted than at control sites. Consistent with this, the forecasted reduction in the number of crashes per year and mile during the years after completion of the conversion at converted sites is more pronounced than at control sites. Seasonal effects on the number of crashes have been well-documented. In this dataset, we found that, as expected, the expected number of monthly crashes per mile tends to be higher during winter months than during the rest of the year. Perhaps more interestingly, we found that there is an interaction between the four to three-lane conversion and season; the reduction in the number of crashes appears to be more pronounced during months, when the weather is nice than during other times of the year, even though a reduction was estimated for the entire year. Thus, it appears that the four to three-lane conversion, while effective year-round, is particularly effective in reducing the expected number of crashes in nice weather.
Resumo:
The FY 2008 budget we present to you today was built from the ground up and is the result of a budget process that focuses on priorities and results. Faced with difficult choices, we are heartened by the progress we have achieved with your cooperation and collaboration. Fulfilling our responsibility to Iowa children, together we have focused resources on cing class sizes and reversed an eight-year decline in test scores. As a result, Iowa students have reachieved four straight years of improved test scores, ranking among America’s best.