18 resultados para Validation of test results
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
All noncomplying penetration and absolute viscosity results must be verified before being reported. This verification of test results is done by reheating and retesting the identical sample that is suspect. The District Laboratories are required to submit penetration and absolute viscosity correlation samples to the Central Laboratory. These samples are the identical ones tested by the District Laboratories. When the Central laboratory tests these correlation samples they are also considered to be reheated and retested. Reheating a sample will harden the asphalt to some degree and possibly cause a change in the test results. This investigation was conducted to determine how much change in penetration and absolute viscosity could be expected by reheating and retesting asphalt samples.
Resumo:
Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix design process developed during the previous phase is applied for CIR-emulsion mixtures with varying emulsified asphalt contents. Dynamic modulus test, dynamic creep test, static creep test and raveling test were conducted to evaluate the short- and long-term performance of CIR-emulsion mixtures at various testing temperatures and loading conditions. A potential benefit of this research is a better understanding of CIR-emulsion material properties in comparison with those of CIR-foam material that would allow for the selection of the most appropriate CIR technology and the type and amount of the optimum stabilization material. Dynamic modulus, flow number and flow time of CIR-emulsion mixtures using CSS- 1h were generally higher than those of HFMS-2p. Flow number and flow time of CIR-emulsion using RAP materials from Story County was higher than those from Clayton County. Flow number and flow time of CIR-emulsion with 0.5% emulsified asphalt was higher than CIR-emulsion with 1.0% or 1.5%. Raveling loss of CIR-emulsion with 1.5% emulsified was significantly less than those with 0.5% and 1.0%. Test results in terms of dynamic modulus, flow number, flow time and raveling loss of CIR-foam mixtures are generally better than those of CIR-emulsion mixtures. Given the limited RAP sources used for this study, it is recommended that the CIR-emulsion mix design procedure should be validated against several RAP sources and emulsion types.
Resumo:
Currently, no standard mix design procedure is available for CIR-emulsion in Iowa. The CIR-foam mix design process developed during the previous phase is applied for CIR-emulsion mixtures with varying emulsified asphalt contents. Dynamic modulus test, dynamic creep test, static creep test and raveling test were conducted to evaluate the short- and long-term performance of CIR-emulsion mixtures at various testing temperatures and loading conditions. A potential benefit of this research is a better understanding of CIR-emulsion material properties in comparison with those of CIR-foam material that would allow for the selection of the most appropriate CIR technology and the type and amount of the optimum stabilization material. Dynamic modulus, flow number and flow time of CIR-emulsion mixtures using CSS-1h were generally higher than those of HFMS-2p. Flow number and flow time of CIR-emulsion using RAP materials from Story County was higher than those from Clayton County. Flow number and flow time of CIR-emulsion with 0.5% emulsified asphalt was higher than CIR-emulsion with 1.0% or 1.5%. Raveling loss of CIR-emulsion with 1.5% emulsified was significantly less than those with 0.5% and 1.0%. Test results in terms of dynamic modulus, flow number, flow time and raveling loss of CIR-foam mixtures are generally better than those of CIR-emulsion mixtures. Given the limited RAP sources used for this study, it is recommended that the CIR-emulsion mix design procedure should be validated against several RAP sources and emulsion types.
Resumo:
A validation study has been performed using the Soil and Water Assessment Tool (SWAT) model with data collected for the Upper Maquoketa River Watershed (UMRW), which drains over 16,000 ha in northeast Iowa. This validation assessment builds on a previous study with nested modeling for the UMRW that required both the Agricultural Policy EXtender (APEX) model and SWAT. In the nested modeling approach, edge-offield flows and pollutant load estimates were generated for manure application fields with APEX and were then subsequently routed to the watershed outlet in SWAT, along with flows and pollutant loadings estimated for the rest of the watershed routed to the watershed outlet. In the current study, the entire UMRW cropland area was simulated in SWAT, which required translating the APEX subareas into SWAT hydrologic response units (HRUs). Calibration and validation of the SWAT output was performed by comparing predicted flow and NO3-N loadings with corresponding in-stream measurements at the watershed outlet from 1999 to 2001. Annual stream flows measured at the watershed outlet were greatly under-predicted when precipitation data collected within the watershed during the 1999-2001 period were used to drive SWAT. Selection of alternative climate data resulted in greatly improved average annual stream predictions, and also relatively strong r2 values of 0.73 and 0.72 for the predicted average monthly flows and NO3-N loads, respectively. The impact of alternative precipitation data shows that as average annual precipitation increases 19%, the relative change in average annual streamflow is about 55%. In summary, the results of this study show that SWAT can replicate measured trends for this watershed and that climate inputs are very important for validating SWAT and other water quality models.
Validation of the New Mix Design Process for Cold In-Place Rehabilitation Using Foamed Asphalt, 2007
Resumo:
Asphalt pavement recycling has grown dramatically over the last few years as a viable technology to rehabilitate existing asphalt pavements. Iowa's current Cold In-place Recycling (CIR) practice utilizes a generic recipe specification to define the characteristics of the CIR mixture. As CIR continues to evolve, the desire to place CIR mixture with specific engineering properties requires the use of a mix design process. A new mix design procedure was developed for Cold In-place Recycling using foamed asphalt (CIR-foam) in consideration of its predicted field performance. The new laboratory mix design process was validated against various Reclaimed Asphalt Pavement (RAP) materials to determine its consistency over a wide range of RAP materials available throughout Iowa. The performance tests, which include dynamic modulus test, dynamic creep test and raveling test, were conducted to evaluate the consistency of a new CIR-foam mix design process to ensure reliable mixture performance over a wide range of traffic and climatic conditions. The “lab designed” CIR will allow the pavement designer to take the properties of the CIR into account when determining the overlay thickness.
Resumo:
The objective of this research is to determine whether the nationally calibrated performance models used in the Mechanistic-Empirical Pavement Design Guide (MEPDG) provide a reasonable prediction of actual field performance, and if the desired accuracy or correspondence exists between predicted and monitored performance for Iowa conditions. A comprehensive literature review was conducted to identify the MEPDG input parameters and the MEPDG verification/calibration process. Sensitivities of MEPDG input parameters to predictions were studied using different versions of the MEPDG software. Based on literature review and sensitivity analysis, a detailed verification procedure was developed. A total of sixteen different types of pavement sections across Iowa, not used for national calibration in NCHRP 1-47A, were selected. A database of MEPDG inputs and the actual pavement performance measures for the selected pavement sites were prepared for verification. The accuracy of the MEPDG performance models for Iowa conditions was statistically evaluated. The verification testing showed promising results in terms of MEPDG’s performance prediction accuracy for Iowa conditions. Recalibrating the MEPDG performance models for Iowa conditions is recommended to improve the accuracy of predictions. ****************** Large File**************************
Resumo:
This past winter the sieve analysis of combined aggregate was investigated. This study was given No. 26 by the Central Laboratory. The purpose of this work was to try and develop a sieve analysis procedure for combined aggregate which is less time consuming and has the same accuracy as the method described in I.M. 304. In an attempt to use a variety of aggregates for this investigation, a request was made to each District Materials Office to obtain at least 3 different combined aggregate samples in their respective districts. At the same time it was also requested that the field technician test these samples, prior to submitting them to the Central Laboratory. The field technician was instructed to test each sample as described in method I.M. 304 and also by a modified AASHTO T27 method which will be identified in the report as Method A. The modified AASHTO Method A was identical to T27 with the exception that a smaller sample is used for testing. The field technicians submitted the samples, test results and also comments regarding the modified AASHTO procedure. The general comments of the modified AASHTO procedure were: The method was much simpler to follow; however, it took about the same amount of time so there was no real advantage. After reviewing AASHTO T27, T164, I.M. 304 and Report No. FHWA-RD-77-53 another test method was purposed. Report No. FHWA-RD-77-53 is a report prepared by FHWA from data they gathered concerning control practices and shortcut or alternative test methods for aggregate gradation. A second test method was developed which also was very similar to AASHTO T27, The test procedure for this method is attached and is identified as Method B. The following is a summary of test results submitted by the Field Technicians and obtained by the aggregate section of the Central Laboratory.
Resumo:
In September and October of 2008, the Iowa Department of Public Health (IDPH) collaborated with schools in Iowa to conduct the 2008 Iowa Youth Survey (IYS). The 2008 IYS is the twelfth in a series of surveys that have been completed every three years since 1975. The survey is conducted with students in grades 6, 8, and 11 attending Iowa public and private schools. The IYS includes questions about students’ behaviors, attitudes, and beliefs, as well as their perceptions of peer, family, school, neighborhood, and community environments.
Resumo:
The 2002 Iowa Youth Survey (IYS) State of Iowa report was designed to help state-level planners identify youth development-related needs, develop relevant programs, and assess the outcomes of those programs. These data can help us better understand our youth and their needs. They can help us assess the strengths and weaknesses of our schools, families and communities from the young person’s perspective. In addition, the data in this report help the state obtain funds for a wide variety of programs. At every step in the process – from needs identification, to program development and implementation, to program assessment – the 2002 IYS data will provide a valuable resource. The state report can also help Iowa’s schools, area education agencies and counties assess their relative strengths and weaknesses. The grades 6, 8, and 11, as well as male and female percentages reported in each of these reports can be compared with the respective state report percentages. The higher the proportion of students in each of these columns that completed a usable IYS questionnaire, the more likely the comparisons with the state report percentages will be unbiased. Such comparisons should be considered exploratory, but for the most part are likely to prove useful.
Resumo:
The 2005 Iowa Youth Survey (IYS) State of Iowa report was designed to help state-level planners identify youth development-related needs, develop relevant programs, and assess the outcomes of those programs. These data can help you better understand our youth and their needs. They can also help you assess the strengths and weaknesses of our schools, families, and communities from the young person’s perspective. In addition, the data in this report help the state obtain funds for a wide variety of programs. At every step of the process–from needs identification, to program development and implementation, to program assessment–the 2005 IYS data will prove to be a valuable resource. The state report can also help Iowa’s schools, area education agencies, and counties assess their relative strengths and weaknesses. The grades 6, 8, and 11, as well as male and female percentages reported in district-level, AEA-level, county-level, and other 2005 IYS reports can be compared with the respective state report percentages. The higher the proportion of students in each of these columns that completed usable IYS questionnaires, the more likely the comparisons with the state report percentages will be unbiased. Such comparisons should be considered exploratory, but for the most part are likely to be useful.
Resumo:
This report summarizes research conducted at Iowa State University on behalf of the Iowa Department of Transportation, focusing on the volumetric state of hot-mix asphalt (HMA) mixtures as they transition from stable to unstable configurations. This has raditionally been addressed during mix design by meeting a minimum voids in the mineral aggregate (VMA) requirement, based solely upon the nominal maximum aggregate size without regard to other significant aggregate-related properties. The goal was to expand the current specification to include additional aggregate properties, e.g., fineness modulus, percent crushed fine and coarse aggregate, and their interactions. The work was accomplished in three phases: a literature review, extensive laboratory testing, and statistical analysis of test results. The literature review focused on the history and development of the current specification, laboratory methods of identifying critical mixtures, and the effects of other aggregate-related factors on critical mixtures. The laboratory testing involved three maximum aggregate sizes (19.0, 12.5, and 9.5 millimeters), three gradations (coarse, fine, and dense), and combinations of natural and manufactured coarse and fine aggregates. Specimens were compacted using the Superpave Gyratory Compactor (SGC), conventionally tested for bulk and maximum theoretical specific gravities and physically tested using the Nottingham Asphalt Tester (NAT) under a repeated load confined configuration to identify the transition state from sound to unsound. The statistical analysis involved using ANOVA and linear regression to examine the effects of identified aggregate factors on critical state transitions in asphalt paving mixtures and to develop predictive equations. The results clearly demonstrate that the volumetric conditions of an HMA mixture at the stable unstable threshold are influenced by a composite measure of the maximum aggregate size and gradation and by aggregate shape and texture. The currently defined VMA criterion, while significant, is seen to be insufficient by itself to correctly differentiate sound from unsound mixtures. Under current specifications, many otherwise sound mixtures are subject to rejection solely on the basis of failing to meet the VMA requirement. Based on the laboratory data and statistical analysis, a new paradigm to volumetric mix design is proposed that explicitly accounts for aggregate factors (gradation, shape, and texture).
Resumo:
In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.
Resumo:
As the list of states adopting the HWTD continues to grow, there is a need to evaluate how results are utilized. AASHTO T 324 does not standardize the analysis and reporting of test results. Furthermore, processing and reporting of the results among manufacturers is not uniform. This is partly due to the variation among agency reporting requirements. Some include only the midpoint rut depth, while others include the average across the entire length of the wheel track. To eliminate bias in reporting, statistical analysis was performed on over 150 test runs on gyratory specimens. Measurement location was found to be a source of significant variation in the HWTD. This is likely due to the nonuniform wheel speed across the specimen, geometry of the specimen, and air void profile. Eliminating this source of bias when reporting results is feasible though is dependent upon the average rut depth at the final pass. When reporting rut depth at the final pass, it is suggested for poor performing samples to average measurement locations near the interface of the adjoining gyratory specimens. This is necessary due to the wheel lipping on the mold. For all other samples it is reasonable to only eliminate the 3 locations furthest from the gear house. For multi‐wheel units, wheel side was also found to be significant for poor and good performing samples. After eliminating the suggested measurements from the analysis, the wheel was no longer a significant source of variation.
Resumo:
Since integral abutment bridges decrease the initial and maintenance costs of bridges, they provide an attractive alternative for bridge designers. The objective of this project is to develop rational and experimentally verified design recommendations for these bridges. Field testing consisted of instrumenting two bridges in Iowa to monitor air and bridge temperatures, bridge displacements, and pile strains. Core samples were also collected to determine coefficients of thermal expansion for the two bridges. Design values for the coefficient of thermal expansion of concrete are recommended, as well as revised temperature ranges for the deck and girders of steel and concrete bridges. A girder extension model is developed to predict the longitudinal bridge displacements caused by changing bridge temperatures. Abutment rotations and passive soil pressures behind the abutment were neglected. The model is subdivided into segments that have uniform temperatures, coefficients of expansion, and moduli of elasticity. Weak axis pile strains were predicted using a fixed-head model. The pile is idealized as an equivalent cantilever with a length determined by the surrounding soil conditions and pile properties. Both the girder extension model and the fixed-head model are conservative for design purposes. A longitudinal frame model is developed to account for abutment rotations. The frame model better predicts both the longitudinal displacement and weak axis pile strains than do the simpler models. A lateral frame model is presented to predict the lateral motion of skewed bridges and the associated strong axis pile strains. Full passive soil pressure is assumed on the abutment face. Two alternatives for the pile design are presented. Alternative One is the more conservative and includes thermally induced stresses. Alternative Two neglects thermally induced stresses but allows for the partial formation of plastic hinges (inelastic redistribution of forces). Ductility criteria are presented for this alternative. Both alternatives are illustrated in a design example.
Resumo:
The Iowa Department of Transportation is evaluating the use of ground recycled crumb rubber from discarded tires in asphalt rubber cement. There were four projects completed during 1991 and another one constructed in 1992. This project is located on IA 140 north of Kingsley in Plymouth County. The project contains one section with reacted asphalt rubber cement (ARC) used in both binder and surface courses, one with reacted ARC used in the surface course and a conventional binder course, and a conventional mix control section. The reacted rubber binder course was placed on October 17, 1991 and the reacted rubber surface course was placed on October 17, 18, and 19. Inclement weather caused a slight delay in placing or constructing the surface. There was a minor problem with shoving and cracking of the binder course. The construction went well otherwise. Information included in this report consists of test results, construction reports, and cost comparisons.