5 resultados para VELOCITIES
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
A laboratory study has been conducted with two aims in mind. The first goal was to develop a description of how a cutting edge scrapes ice from the road surface. The second goal was to investigate the extent, if any, to which serrated blades were better than un-serrated or "classical" blades at ice removal. The tests were conducted in the Ice Research Laboratory at the Iowa Institute of Hydraulic Research of the University of Iowa. A specialized testing machine, with a hydraulic ram capable of attaining scraping velocities of up to 30 m.p.h. was used in the testing. In order to determine the ice scraping process, the effects of scraping velocity, ice thickness, and blade geometry on the ice scraping forces were determined. Higher ice thickness lead to greater ice chipping (as opposed to pulverization at lower thicknesses) and thus lower loads. Behavior was observed at higher velocities. The study of blade geometry included the effect of rake angle, clearance angle, and flat width. The latter were found to be particularly important in developing a clear picture of the scraping process. As clearance angle decreases and flat width increases, the scraping loads show a marked increase, due to the need to re-compress pulverized ice fragments. The effect of serrations was to decrease the scraping forces. However, for the coarsest serrated blades (with the widest teeth and gaps) the quantity of ice removed was significantly less than for a classical blade. Finer serrations appear to be able to match the ice removal of classical blades at lower scraping loads. Thus, one of the recommendations of this study is to examine the use of serrated blades in the field. Preliminary work (by Nixon and Potter, 1996) suggests such work will be fruitful. A second and perhaps more challenging result of the study is that chipping of ice is more preferable to pulverization of the ice. How such chipping can be forced to occur is at present an open question.
Resumo:
A laboratory study has been conducted with two aims in mind. The first goal was to develop a description of how a cutting edge scrapes ice from the road surface. The second goal was to investigate the extent, if any, to which serrated blades were better than un-serrated or "classical" blades at ice removal. The tests were conducted in the Ice Research Laboratory at the Iowa Institute of Hydraulic Research of the University of Iowa. A specialized testing machine, with a hydraulic ram capable of attaining scraping velocities of up to 30 m.p.h. was used in the testing. In order to determine the ice scraping process, the effects of scraping velocity, ice thickness, and blade geometry on the ice scraping forces were determined. Higher ice thickness lead to greater ice chipping (as opposed to pulverization at lower thicknesses) and thus lower loads. S~milabr ehavior was observed at higher velocities. The study of blade geometry included the effect of rake angle, clearance angle, and flat width. The latter were found to be particularly important in developing a clear picture of the scraping process. As clearance angle decreases and flat width increases, the scraping loads show a marked increase, due to the need to re-compress pulverized ice fragments. The effect of serrations was to decrease the scraping forces. However, for the coarsest serrated blades (with the widest teeth and gaps) the quantity of ice removed was significantly less than for a classical blade. Finer serrations appear to be able to match the ice removal of classical blades at lower scraping loads. Thus, one of the recommendations of this study is to examine the use of serrated blades in the field. Preliminary work (by Nixon and Potter, 1996) suggests such work will be fruitful. A second and perhaps more challenging result of the study is that chipping of ice is more preferable to pulverization of the ice. How such chipping can be forced to occur is at present an open question.
Resumo:
The objective of this study was to determine the practicality and effectiveness of using submerged vanes ("Iowa Vanes") to control bank erosion in a bend of East Nishnabotna River, Iowa. The vane system was constructed during the summer of 1985. It functions by eliminating, or reducing, the centrifugally induced helical motion of the flow in the bend, which is the root cause of bank undermining. The system was monitored over a 2-year period, from September 1985 to October 1987. Two surveys were conducted in the spring of 1986 in which data were taken of depths and velocities throughout the bend and of water-surface slope. The movement of the bank was determined from aerial photos and from repeated measurements of the vane-to-bank distance. The bankfull scour depths and velocities along the bank have been reduced significantly; and the movement of the bank has been stopped or considerably reduced. The improvements were obtained without changing the energy slope of the channel. Areas of design improvements were identified.
Resumo:
The DMACC Lake Watershed Improvement project will focus on water quality and quantity as well as channel and lake restoration. Roadway, parking lot, and roof drainage from the west and northwest portions of the campus add significant amounts of pollutants and silt to the lake. Severe channel erosion exists along the northern creek channel with exposed cut banks ranging from 2-10 feet in height devoid of vegetation. Heavy lake sedimentation and algae blooms are a result of accumulated sediment being conveyed to the lake. Most sections of the north channel have grades of between 0.5% and 1%. This channel receives large scouring flow velocities. There are no natural riffle or pool systems. There are five areas where these riffle and pool systems may need to be created in order to slow overall channel velocities. This will create a series of rock riffles and a still pool that will mimic the conditions that natural channels tend to create, protecting the channel from undercutting. Multiple practices will need to be implemented to address the pollutant, silt, and channel erosion. Improvements will be specifically tailored to address problems observed within the north channel, on-site drainage from the west and northwest, as well as off-site drainage to the north of the campus and east of Ankeny Blvd (Hwy 69). The result will be improved quality and quantity of site drainage and a channel with a more natural appearance and reduced scour velocities. Sections of the north channel will require grading to establish slopes that can support deep rooted vegetation and to improve maintenance access. Areas with eroded banks will require slope pull back and may also require toe armor protection to stabilize. A constructed wetland will collect and treat runoff from the west on site parking lot, before being discharged into the lake. This project will create educational opportunities to both students and the general public as well as interested parties outside of the local area for how an existing system can be retro fitted for improved watershed quality.
Resumo:
Phase 2 of the Saylor Creek Improvement Project is focused on channel restoration. The existing stream channel is generally incised, running through areas primarily covered with heavy trees, brush and weeds. The ravine ranges from 6 to 20 feet deep through the corridor with very steep slopes in several areas. In two areas storm outlets are undercut or suspended above the channel. Tall undercut, eroded banks exist along several of the outside bends. Sediment deposition on the inside bends limits the cross-section of the channel, increasing flow velocity and forcing this faster flow toward the eroded outside bank. A wide array of practices will need to be implemented to address channel erosion. Improvements will be specifically tailored to address problems observed at each bend. The result will be a channel with a more natural appearance, and reduced use of hard armor and revetment. Some sections will require minimal grading with removal of underbrush for improved maintenance access and more sun exposure, better allowing deep rooted plants and flowers to establish to provide further erosion protection. Straight sections with steep banks will require grading to pull back slopes, increasing the creek's capacity to convey storm flows at slower velocities. Sections with sharp bends will require slope pull back and armor protection. A constructed wetland will collect and treat runoff from a small sub-watershed, before being discharged into the main tributary.