7 resultados para Ultra-sonografia intra-operatória

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

20.00% 20.00%

Publicador:

Resumo:

· Evaluate conventional methods of slab removal and asphalt surface preparation for subsequent overlays of portland cement concrete (PCC) in the “remove and replace” areas. · Evaluate existing asphaltic concrete surface under the “remove and patch” areas of rehabilitation areas and evaluate joint formation in the areas of patching. · Evaluate polypropylene fiber enhanced concrete at the three-inch depth to determine the cost/benefit of its inclusion. · Evaluate the performance of the rehabilitated ultra-thin whitetopping sections and the extended performance of the existing ultra-thin sections with and without patching. · Validate existing ultra-thin whitetopping design procedures of the Portland Cement Association (PCA) and American Concrete Pavement Association (ACPA) for application in Iowa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this day of the mature highway systems, a new set of problems is facing the highway engineer. The existing infrastructure has aged to or past the design life of the original pavement design. In many cases, increased commercial traffic is creating the need for additional load carrying capacity, causing state highway engineers to consider new alternatives for rehabilitation of existing surfaces. Alternative surface materials, thicknesses, and methods of installation must be identified to meet the needs of individual pavements and budgets. With overlays being one of the most frequently used rehabilitation alternatives, it is important to learn more about the limitations and potential performance of thin bonded portland cement overlays and subsequent rehabilitation. The Iowa ultra-thin project demonstrated the application of thin portland cement concrete overlays as a rehabilitation technique. It combined the variables of base preparation, overlay thickness, slab size, and fiber enhancement into a series of test sections over a 7.2-mile length. This report identifies the performance of the overlays in terms of deflection reduction, reduced cracking, and improved bonding between the portland cement concrete (PCC) and asphalt cement concrete (ACC) base layers. The original research project was designed to evaluate the variables over a 5-year period of time. A second project provided the opportunity to test overlay rehabilitation techniques and continue measurement of the original overlay performance for 5 additional years. All performance indicators identified exceptional performance over the 10-year evaluation period for each of the variable combinations considered. The report summarizes the research methods, results, and identifies future research ideas to aid the pavement overlay designer in the successful implementation of ultra-thin portland cement concrete overlays as an lternative pavement rehabilitation technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the linkage between protectionism and invasive species (IS) hazard in the context of two-way trade and multilateral trade integration, two major features of real-world agricultural trade. Multilateral integration includes the joint reduction of tariffs and trade costs among trading partners. Multilateral trade integration is more likely to increase damages from IS than predicted by unilateral trade opening under the classic Heckscher-Ohlin-Samuelson (HOS) framework because domestic production (the base susceptible to damages) is likely to increase with expanding export markets. A country integrating its trade with a partner characterized by relatively higher tariff and trade costs is also more likely to experience increased IS damages via expanded domestic production for the same reason. We illustrate our analytical results with a stylized model of the world wheat market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research presented herein describes an application of a newly developed material called Ultra-High Performance Concrete (UHPC) to a single-span bridge. The two primary objectives of this research were to develop a shear design procedure for possible code adoption and to provide a performance evaluation to ensure the viability of the first UHPC bridge in the United States. Two other secondary objectives included defining of material properties and understanding of flexural behavior of a UHPC bridge girder. In order to obtain information in these areas, several tests were carried out including material testing, large-scale laboratory flexure testing, large-scale laboratory shear testing, large-scale laboratory flexure-shear testing, small-scale laboratory shear testing, and field testing of a UHPC bridge. Experimental and analytical results of the described tests are presented. Analytical models to understand the flexure and shear behavior of UHPC members were developed using iterative computer based procedures. Previous research is referenced explaining a simplified flexural design procedure and a simplified pure shear design procedure. This work describes a shear design procedure based on the Modified Compression Field Theory (MCFT) which can be used in the design of UHPC members. Conclusions are provided regarding the viability of the UHPC bridge and recommendations are made for future research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strategic plan for bridge engineering issued by AASHTO in 2005 identified extending the service life and optimizing structural systems of bridges in the United States as two grand challenges in bridge engineering, with the objective of producing safer bridges that have a minimum service life of 75 years and reduced maintenance cost. Material deterioration was identified as one of the primary challenges to achieving the objective of extended life. In substructural applications (e.g., deep foundations), construction materials such as timber, steel, and concrete are subjected to deterioration due to environmental impacts. Using innovative and new materials for foundation applications makes the AASHTO objective of 75 years service life achievable. Ultra High Performance Concrete (UHPC) with compressive strength of 180 MPa (26,000 psi) and excellent durability has been used in superstructure applications but not in geotechnical and foundation applications. This study explores the use of precast, prestressed UHPC piles in future foundations of bridges and other structures. An H-shaped UHPC section, which is 10-in. (250-mm) deep with weight similar to that of an HP10×57 steel pile, was designed to improve constructability and reduce cost. In this project, instrumented UHPC piles were cast and laboratory and field tests were conducted. Laboratory tests were used to verify the moment-curvature response of UHPC pile section. In the field, two UHPC piles have been successfully driven in glacial till clay soil and load tested under vertical and lateral loads. This report provides a complete set of results for the field investigation conducted on UHPC H-shaped piles. Test results, durability, drivability, and other material advantages over normal concrete and steel indicate that UHPC piles are a viable alternative to achieve the goals of AASHTO strategic plan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An 11.6 km research project was constructed in 1994 on a portion of Iowa Highway 21 in Iowa County, from U.S. 6 to Iowa Highway 212. This research is intended to evaluate the effect of four primary variables on long term performances of the PCC concrete overlay, commonly called whitetopping. The variables are thickness (50 mm, 100 mm, 150 mm, and 200 mm), joint spacing (0.6 m squares, 1.2 m squares, 1.8 m squares, and 4.6 m spacing), fiber use (concrete with and without polypropolene fibers) and surface preparation (patch only, scarifying the surface, and cold-in-place recycling). After two years, only two sections exhibit a small amount of debonding and distress cracking. Both sections are 50 mm thick. Within each of these two sections, only 2% of the area is affected. Two other 50 mm thick sections have a small number of cracks but no debonding has been found. No adverse effects of these cracks are evident. Three asphalt overlay sections were also constructed. In each asphalt section, transverse cracks have recently been found. At two years of age, the research sections are performing very well. An insignificant number of cracks and no distressed areas have been found in any research sections thicker than 50 mm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the variety of road users and vehicle types that travel on U.S. public roadways, slow moving vehicles (SMVs) present unique safety and operations issues. SMVs include vehicles that do not maintain a constant speed of 25 mph, such as large farm equipment, construction vehicles, or horse-drawn buggies. Though the number of crashes involving SMVs is relatively small, SMV crashes tend to be severe. Additionally, SMVs can be encountered regularly on non-Interstate/non-expressway public roadways, but motorists may not be accustomed to these vehicles. This project was designed to improve transportation safety for SMVs on Iowa’s public roadway system. This report includes a literature review that shows various SMV statistics and laws across the United States, a crash study based on three years of Iowa SMV crash data, and recommendations from the SMV community.