3 resultados para UCPR r 5
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Iowa Department of Transportation has been determining a present serviceability index (PSI) on the primary highway system since 1968. A CHLOE profilometer has been used as the standard for calibrating the Roadmeters that do the system survey. The current Roadmeter, an IJK Iowa DOT developed unit, is not considered an acceptable Roadmeter for determining the FHWA required International Roughness Index (IRI). Iowa purchased a commercial version of the South Dakota type profile (SD Unit) to obtain IRI. This study was undertaken to correlate the IRI to the IJK Roadmeter and retire the Roadmeter. One hundred forty-seven pavement management sections (IPMS) were tested in June and July 1991 with both units. Correlation coefficients and standard error of estimates were: r' Std. Error PCC pavements 0.81 0.15 Composite pavements 0.71 0.18 ACC pavements 0.77 0.17 The correlation equations developed from this work will allow use of the IRI to predict the IJK Roadmeter response with sufficient accuracy. Trend analysis should also not be affected.
Resumo:
The large volume of traffic on the interstate system makes it difficult to make pavement repairs. The maintenance crew needs 4-5 hours to break out the concrete to be replaced and prepare the hole for placing new concrete. Because of this it is usually noon before the patch can be placed. Since it is desirable to remove the barricades before dark there are only 7-8 hours for the concrete to reach the required strength. There exists a need for a concrete that can reach the necessary strength (modulus of rupture = 500 psi) in 7-8 hours. The purpose of this study is to determine if type III cement and/or an accelerator can be used in an M-4 mix to yield a fast setting patch with very little shrinkage. It is recognized that calcium chloride is a corrosive material and may therefore have detrimental effects upon the reinforcing steel. The study of these effects, however, is beyond the scope of this investigation.
Resumo:
One of the main problems of bridge maintenance in Iowa is the spalling and scaling of the decks. This problem stems from the continued use of deicing salts during the winter months. Since bridges will frost or freeze more often than roadways, the use of deicing salts on bridges is more frequent. The salt which is spread onto the bridge dissolves in water and permeates into the concrete deck. When the salt reaches the depth of the reinforcing steel and the concentration at that depth reaches the threshold concentration for corrosion (1.5 lbs./yd. 3 ), the steel will begin to oxidize. The oxidizing steel must then expand within the concrete. This expansion eventually forces undersurface fractures and spalls in the concrete. The spalling increases maintenance problems on bridges and in some cases has forced resurfacing after only a few years of service. There are two possible solutions to this problem. One solution is discontinuing the use of salts as the deicing agent on bridges and the other is preventing the salt from reaching or attacking the reinforcing steel. This report deals with one method which stops the salt from reaching the reinforcing steel. The method utilizes a waterproof membrane on the surface of a bridge deck. The waterproof membrane stops the water-salt solution from entering the concrete so the salt cannot reach the reinforcing steel.