5 resultados para Transportation policy.
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Building on the policy directions advanced in the publication "Policy Strategies for Iowa in Making Major Road Investments", this report defines each policy issue and discusses how transportation can play a role in addressing it. Perspectives from several focus group meetings conducted in nine communities in Iowa are discussed. The report also examines available data pertaining to the issues. Finally, the report presents several specific recommendations dealing with issues on economic development, safety, choice of transportation modes, and financing transportation in the future. The recommendations are directed at proving the Iowa Transportation Commission with the best possible insights to be used in making investment decisions that will impact the quality of life in Iowa in future years.
Resumo:
Crossroads 2000 was the second biennial transportation research conference cosponsored by the Center for Transportation Research and Education (CTRE) at Iowa State University and the Iowa Department of Transportation. This proceedings is the set of papers presented at the conference. Twenty-five categories of papers were presented in five concurrent sessions. Reflecting the increasingly critical role of intelligent transportation systems (ITS) in maintaining and enhancing transportation safety and efficiency, one category in each concurrent session addressed an area of ITS. However, papers were included from all areas of interest, ranging from transportation infrastructure design to transportation policy. The proceedings contains 58 papers.
Resumo:
The historically-reactive approach to identifying safety problems and mitigating them involves selecting black spots or hot spots by ranking locations based on crash frequency and severity. The approach focuses mainly on the corridor level without taking the exposure rate (vehicle miles traveled) and socio-demographics information of the study area, which are very important in the transportation planning process, into consideration. A larger study analysis unit at the Transportation Analysis Zone (TAZ) level or the network planning level should be used to address the needs of development of the community in the future and incorporate safety into the long-range transportation planning process. In this study, existing planning tools (such as the PLANSAFE models presented in NCHRP Report 546) were evaluated for forecasting safety in small and medium-sized communities, particularly as related to changes in socio-demographics characteristics, traffic demand, road network, and countermeasures. The research also evaluated the applicability of the Empirical Bayes (EB) method to network-level analysis. In addition, application of the United States Road Assessment Program (usRAP) protocols at the local urban road network level was investigated. This research evaluated the applicability of these three methods for the City of Ames, Iowa. The outcome of this research is a systematic process and framework for considering road safety issues explicitly in the small and medium-sized community transportation planning process and for quantifying the safety impacts of new developments and policy programs. More specifically, quantitative safety may be incorporated into the planning process, through effective visualization and increased awareness of safety issues (usRAP), the identification of high-risk locations with potential for improvement, (usRAP maps and EB), countermeasures for high-risk locations (EB before and after study and PLANSAFE), and socio-economic and demographic induced changes at the planning-level (PLANSAFE).
Resumo:
The Commercial and Industrial Network improvement and programming policy reflected in this summary report was adopted for use in future highway programming by the Transportation Commission on November 5, 1991. The Iowa Department of Transportation, as directed by the Legislature, has established a 2,331-mile network of commercial and industrial highways and is directing a significant amount of primary construction funding resources toward improvements to this network. This summary outlines the technical needs assessment for improvements on the Commercial and Industrial Network for the next 20-year period. The portions of the network which require four-lane capacity, as well as major improvements to the two-lane sections, are graphically displayed. Detailed improvement needs and costs are listed in tabular form for the first two five-year periods (1992-1996 and 1997-2001). It is essential to note that these improvement needs are the result of a technical assessment and do not imply any funding commitment.
Resumo:
This study had three objectives: (1) to develop a comprehensive truck simulation that executes rapidly, has a modular program construction to allow variation of vehicle characteristics, and is able to realistically predict vehicle motion and the tire-road surface interaction forces; (2) to develop a model of doweled portland cement concrete pavement that can be used to determine slab deflection and stress at predetermined nodes, and that allows for the variation of traditional thickness design factors; and (3) to implement these two models on a work station with suitable menu driven modules so that both existing and proposed pavements can be evaluated with respect to design life, given specific characteristics of the heavy vehicles that will be using the facility. This report summarizes the work that has been performed during the first year of the study. Briefly, the following has been accomplished: A two dimensional model of a typical 3-S2 tractor-trailer combination was created. A finite element structural analysis program, ANSYS, was used to model the pavement. Computer runs have been performed varying the parameters defining both vehicle and road elements. The resulting time specific displacements for each node are plotted, and the displacement basin is generated for defined vehicles. Relative damage to the pavement can then be estimated. A damage function resulting from load replications must be assumed that will be reflected by further pavement deterioration. Comparison with actual damage on Interstate 80 will eventually allow verification of these procedures.