2 resultados para Transpacific cables.
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Mass production of prestressed concrete beams is facilitated by the accelerated curing of the concrete. The ·method most commonly used for this purpose is steam curing at atmospheric pressure. This requires concrete temperatures as high as 150°F. during the curing period. Prestressing facilities in Iowa are located out of doors. This means that during the winter season the forms are set and the steel cables are stressed at temperatures as low as 0°F. The thermal expansion of the prestressing cables should result in a reduction of the stress which was placed in them at the lower temperature. If the stress is reduced in the cables, then the amount of prestress ultimately transferred to the concrete may be less than the amount for which the beam was designed. Research project HR-62 was undertaken to measure and explain the difference between the initial stress placed in the cables and the actual stress which is eventually transferred to the concrete. The project was assigned to the Materials Department Laboratory under the general supervision of the Testing Engineer, Mr. James W. Johnson. A small stress bed complete with steam curing facilities was set up in the laboratory, and prestressed concrete beams were fabricated under closely controlled conditions. Measurements were made to determine the initial stress in the steel and the final stress in the concrete. The results of these tests indicate that there is a general loss of prestressing force in excess of that caused by elastic shortening of the concrete. The exact amount of the loss and the identification of the factors involved could not be determined from this limited investigation.
Resumo:
The report documents the development and installation of an instrumented pavement on I-80 in Iowa for the purposes of demonstration and answering current pavement questions. Its two primary objectives include documentation of the installation and verification of existing design procedures through monitoring of the continuous traffic stream reactions in the pavement. Some 120 instruments were installed in a forty foot segment of reconstructed pavement. The instruments included concrete strain gages, weldable strain gages on dowels, LVDT-deflection gages and temperature sensors in the concrete and base material. Five tubes were placed under three joints and two midslabs to measure the relative moisture and density at the interface between the pavement and base with atomic equipment. The instruments were placed ahead of the paving and over 92% of the instruments responded after paving. Planning requirements, problems encountered and costs of installation are presented. The site will use piezoelectric cables in a weigh-in-motion arrangement to trigger the data collection, a microcomputer controlled data acquisition system to analyze multiple sensors simultaneously, and telemetry to monitor the site remotely. Details provide the first time user of instrumentation with valuable information on the planning, problems, costs and coordination required to establish and operate such a site.