3 resultados para Transitive Inferences

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traffic safety engineers are among the early adopters of Bayesian statistical tools for analyzing crash data. As in many other areas of application, empirical Bayes methods were their first choice, perhaps because they represent an intuitively appealing, yet relatively easy to implement alternative to purely classical approaches. With the enormous progress in numerical methods made in recent years and with the availability of free, easy to use software that permits implementing a fully Bayesian approach, however, there is now ample justification to progress towards fully Bayesian analyses of crash data. The fully Bayesian approach, in particular as implemented via multi-level hierarchical models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis, prior information and all available data are seamlessly integrated into posterior distributions on which practitioners can base their inferences. All uncertainties are thus accounted for in the analyses and there is no need to pre-process data to obtain Safety Performance Functions and other such prior estimates of the effect of covariates on the outcome of interest. In this slight, fully Bayesian methods may well be less costly to implement and may result in safety estimates with more realistic standard errors. In this manuscript, we present the full Bayesian approach to analyzing traffic safety data and focus on highlighting the differences between the empirical Bayes and the full Bayes approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of the data and to show some of the types of inferences that are possible within the full Bayesian framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traffic safety engineers are among the early adopters of Bayesian statistical tools for analyzing crash data. As in many other areas of application, empirical Bayes methods were their first choice, perhaps because they represent an intuitively appealing, yet relatively easy to implement alternative to purely classical approaches. With the enormous progress in numerical methods made in recent years and with the availability of free, easy to use software that permits implementing a fully Bayesian approach, however, there is now ample justification to progress towards fully Bayesian analyses of crash data. The fully Bayesian approach, in particular as implemented via multi-level hierarchical models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis, prior information and all available data are seamlessly integrated into posterior distributions on which practitioners can base their inferences. All uncertainties are thus accounted for in the analyses and there is no need to pre-process data to obtain Safety Performance Functions and other such prior estimates of the effect of covariates on the outcome of interest. In this light, fully Bayesian methods may well be less costly to implement and may result in safety estimates with more realistic standard errors. In this manuscript, we present the full Bayesian approach to analyzing traffic safety data and focus on highlighting the differences between the empirical Bayes and the full Bayes approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of the data and to show some of the types of inferences that are possible within the full Bayesian framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remote monitoring through the use of cameras is widely utilized for traffic operation, but has not been utilized widely for roadway maintenance operations. The Utah Department of Transportation (UDOT) has implemented a new remote monitoring system, referred to as a Cloud-enabled Remote Video Streaming (CRVS) camera system for snow removal-related maintenance operations in the winter. The purpose of this study was to evaluate the effectiveness of the use of the CRVS camera system in snow removal-related maintenance operations. This study was conducted in two parts: opinion surveys of maintenance station supervisors and an analysis on snow removal-related maintenance costs. The responses to the opinion surveys mostly displayed positive reviews of the use of the CRVS cameras. On a scale of 1 (least effective) to 5 (most effective), the average overall effectiveness given by the station supervisors was 4.3. An expedition trip for this study was defined as a trip that was made to just check the roadways if snow-removal was necessary. The average of the responses received from surveys was calculated to be a 33 percent reduction in expedition trips. For the second part of this study, an analysis was performed on the snow removal-related maintenance cost data provided by UDOT to see if the installation of a CRVS camera had an effect in reducing expedition trips. This expedition cost comparison was performed for 10 sets of maintenance stations within Utah. It was difficult to make any definitive inferences from the comparison of expedition costs over the years for which precipitation and expedition cost data were available; hence a statistical analysis was performed using the Mixed Model ANOVA. This analysis resulted in an average of 14 percent higher ratio of expedition costs at maintenance stations with a CRVS camera before the installation of the camera compared to the ratio of expedition costs after the installation of the camera. This difference was not proven to be statistically significant at the 95 percent confident level, but indicated that the installation of CRVS cameras was on the average helpful in reducing expedition costs and may be considered practically significant. It is recommended that more detailed and consistent maintenance cost records be prepared for accurate analysis of cost records for this type of study in the future.