89 resultados para Traffic police
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Public travel by motor vehicles is often necessary in road and street sections that have been officially closed for construction, repair, and/or other reasons. This authorization is permitted in order to provide access to homes and businesses located beyond the point of closure. The MUTCD does address appropriate use of specific regulatory signs at the entrance to closed sections; however, direct guidance for temporary traffic control measures within these areas is not included but may be needed. Interpretation and enforcement of common practices may vary among transportation agencies. For example, some law enforcement officers in Iowa have indicated a concern regarding enforcement and jurisdiction of traffic laws in these areas because the Code of Iowa only appears to address violations on roadways open to “public travel.” Enforcement of traffic laws in closed road sections is desirable to maintain safety for workers and for specifically authorized road users. In addition, occasional unauthorized entry by motor vehicles is experienced in closed road areas causing property damage. Citations beyond simple trespass may be advisable to provide better security for construction sites, reduce economic losses from damage to completed work, and create safer work zones.
Resumo:
Investigative report produced by Iowa Citizens' Aide/Ombudsman
Resumo:
Investigative report produced by Iowa Citizens' Aide/Ombudsman
Resumo:
Standards for the construction of full-depth patching in portland cement concrete pavement usually require replacement of all deteriorated based materials with crushed stone, up to the bottom of the existing pavement layer. In an effort to reduce the time of patch construction and costs, the Iowa Department of Transportation and the Department of Civil, Construction and Environmental Engineering at Iowa State University studied the use of extra concrete depth as an option for base construction. This report compares the impact of additional concrete patching material depth on rate of strength gain, potential for early opening to traffic, patching costs, and long-term patch performance. This report also compares those characteristics in terms of early setting and standard concrete mixes. The results have the potential to change the method of Portland cement concrete pavement patch construction in Iowa.
Resumo:
It is commonly regarded that the overuse of traffic control devices desensitizes drivers and leads to disrespect, especially for low-volume secondary roads with limited enforcement. The maintenance of traffic signs is also a tort liability concern, exacerbated by unnecessary signs. The Federal Highway Administration’s (FHWA) Manual on Uniform Traffic Control Devices (MUTCD) and the Institute of Transportation Engineer’s (ITE) Traffic Control Devices Handbook provide guidance for the implementation of STOP signs based on expected compliance with right-of-way rules, provision of through traffic flow, context (proximity to other controlled intersections), speed, sight distance, and crash history. The approach(es) to stop is left to engineering judgment and is usually dependent on traffic volume or functional class/continuity of system. Although presently being considered by the National Committee on Traffic Control Devices, traffic volume itself is not given as a criterion for implementation in the MUTCD. STOP signs have been installed at many locations for various reasons which no longer (or perhaps never) met engineering needs. If in fact the presence of STOP signs does not increase safety, removal should be considered. To date, however, no guidance exists for the removal of STOP signs at two-way stop-controlled intersections. The scope of this research is ultra-low-volume (< 150 daily entering vehicles) unpaved intersections in rural agricultural areas of Iowa, where each of the 99 counties may have as many as 300 or more STOP sign pairs. Overall safety performance is examined as a function of a county excessive use factor, developed specifically for this study and based on various volume ranges and terrain as a proxy for sight distance. Four conclusions are supported: (1) there is no statistical difference in the safety performance of ultra-low-volume stop-controlled and uncontrolled intersections for all drivers or for younger and older drivers (although interestingly, older drivers are underrepresented at both types of intersections); (2) compliance with stop control (as indicated by crash performance) does not appear to be affected by the use or excessive use of STOP signs, even when adjusted for volume and a sight distance proxy; (3) crash performance does not appear to be improved by the liberal use of stop control; (4) safety performance of uncontrolled intersections appears to decline relative to stop-controlled intersections above about 150 daily entering vehicles. Subject to adequate sight distance, traffic professionals may wish to consider removal of control below this threshold. The report concludes with a section on methods and legal considerations for safe removal of stop control.
Resumo:
The Office of Transportation Data, in cooperation with the Federal Highway Administration, prepares this biennial traffic report. This report is used by federal, state, and local governmental agencies in determining highway needs, construction priorities, route location and environmental impact studies, and the application of appropriate design standards. The general public uses this information in determining the amount of traffic that passes a given area as they make their development plans and propose land use changes. The above reflects only a few of the many technical uses for this data.
Resumo:
Secondary accident statistics can be useful for studying the impact of traffic incident management strategies. An easy-to-implement methodology is presented for classifying secondary accidents using data fusion of a police accident database with intranet incident reports. A current method for classifying secondary accidents uses a static threshold that represents the spatial and temporal region of influence of the primary accident, such as two miles and one hour. An accident is considered secondary if it occurs upstream from the primary accident and is within the duration and queue of the primary accident. However, using the static threshold may result in both false positives and negatives because accident queues are constantly varying. The methodology presented in this report seeks to improve upon this existing method by making the threshold dynamic. An incident progression curve is used to mark the end of the queue throughout the entire incident. Four steps in the development of incident progression curves are described. Step one is the processing of intranet incident reports. Step two is the filling in of incomplete incident reports. Step three is the nonlinear regression of incident progression curves. Step four is the merging of individual incident progression curves into one master curve. To illustrate this methodology, 5,514 accidents from Missouri freeways were analyzed. The results show that secondary accidents identified by dynamic versus static thresholds can differ by more than 30%.
Resumo:
Quarterly publication of the Governor's Traffic Safety Bureau, Iowa Department of Public Safety containing traffic safety and related information and news articles
Resumo:
Quarterly publication of the Governor's Traffic Safety Bureau, Iowa Department of Public Safety containing traffic safety and related information and news articles
Resumo:
Special investigation of the City of Grinnell Police Department for the period January 1, 2006 through April 30, 2008
Resumo:
The Iowa Law Enforcement Academy (ILEA) was created by an act of the Iowa legislature in 1967 with its purpose being to upgrade law enforcement to professional status. The specific goals were to maximize training opportunities for law enforcement officers, to coordinate training and to set standards for the law enforcement services.
Resumo:
Annual Report Created by Academy Director E.A. (Penny) Westfall
Resumo:
this report describes traffic law enforcement data collected by the Iowa State Patrol (ISP) related to traffic stops made by Troopers for October 1, 2000 through March 30, 2002. The data contained in this report summarizes the activities of approximately 435 troopers who are assigned to 15 posts throughout the State of Iowa The purpose of this voluntary data collection process was to provide the ISP with the ability to review traffic law enforcement variables in relation to traffic stops. The methodology for this research project was developed and implemented by ISP. Following the data collection period, the Iowa Division of Criminal and Juvenile Justice Planning (CJJP) was asked to assist in the analysis and reporting phase of this ambitious project.
Resumo:
As Iowa's traffic enforcement agency, the Iowa State Patrol is responsible for providing law enforcement services to rural areas of the state as well as traffic enforcement and support for metropolitan areas around the state. Troopers patrol Iowa's highways and conduct traffic enforcement for both unincorporated areas and interstate highways. In addition, our Personnel provide security and police services throughout the state for many special events including, fairs, festivals, and large sporting events such as the Iowa Speedway, University of Iowa and Iowa State football games.
Resumo:
This a survey that determines the total number and type of vehicles entering and leaving Indianola to obtain origin and destination data from representataive samples of those vehicles.