8 resultados para Thin-walled structures Design and construction
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This study had three objectives: (1) to develop a comprehensive truck simulation that executes rapidly, has a modular program construction to allow variation of vehicle characteristics, and is able to realistically predict vehicle motion and the tire-road surface interaction forces; (2) to develop a model of doweled portland cement concrete pavement that can be used to determine slab deflection and stress at predetermined nodes, and that allows for the variation of traditional thickness design factors; and (3) to implement these two models on a work station with suitable menu driven modules so that both existing and proposed pavements can be evaluated with respect to design life, given specific characteristics of the heavy vehicles that will be using the facility. This report summarizes the work that has been performed during the first year of the study. Briefly, the following has been accomplished: A two dimensional model of a typical 3-S2 tractor-trailer combination was created. A finite element structural analysis program, ANSYS, was used to model the pavement. Computer runs have been performed varying the parameters defining both vehicle and road elements. The resulting time specific displacements for each node are plotted, and the displacement basin is generated for defined vehicles. Relative damage to the pavement can then be estimated. A damage function resulting from load replications must be assumed that will be reflected by further pavement deterioration. Comparison with actual damage on Interstate 80 will eventually allow verification of these procedures.
Resumo:
Presented in this report is an investigation of the use of "sand-lightweight" concrete in prestressed concrete structures. The sand-lightweight concrete consists of 100% sand substitution for fines, along with Idealite coarse and medium lightweight aggregate and Type I Portland Cement.
Resumo:
When concrete deterioration begins to occur in highway pavement, repairs become necessary to assure the rider safety, extend its useful life and restore its riding qualities. One rehabilitation technique used to restore the pavement to acceptable highway standards is to apply a thin portland cement concrete (PCC) overlay to the existing pavement. First, any necessary repairs are made to the existing pavement, the surface is then prepared, and the PCC overlay is applied. Brice Petrides-Donohue, Inc. (Donohue) was retained by the Iowa Department of Transportation (IDOT) to evaluate the present condition with respect to debonding of the PCC overlay at fifteen sites on Interstate 80 and State Highway 141 throughout the State of Iowa. This was accomplished by conducting an infrared thermographic and ground penetrating radar survey of these sites which were selected by the Iowa Department of Transportation. The fifteen selected sites were all two lanes wide and one-tenth of a mile long, for a total of three lane miles or 190,080 square feet. The selected sites are as follows: On Interstate 80 Eastbound, from milepost 35.25 to 35.35, milepost 36.00 to 36.10, milepost 37.00 to 37.10, milepost 38.00 to 38.10 and milepost 39.00 to 39.10, on State Highway 141 from milepost 134.00 to 134.10, milepost 134.90 to milepost 135.00, milepost 135.90 to 136.00, milepost 137.00 to 137.10 and milepost 138.00 to 138.10, and on Interstate 80 Westbound from milepost 184.00 to 184.10, milepost 185.00 to 185.10, milepost 186.00 to 186.10, milepost 187.00 to 187.10, and from milepost 188.00 to 188.10.
Resumo:
A 11.6 km (7.2 mi.) portion of IA 21 in Iowa County from the junction of US 6 north to the junction of IA 212, was selected for the research project. The project was divided into 65 different test sections of a PCC overlay of an existing asphalt concrete (AC) surface with thicknesses of 50 mm (2 in.), 100 mm (4 in.), 150 mm (6 in.), and 200 mm (8 in.). The joint spacings for these sections were 0.6 m (2 ft.), 1.2 m (4 ft.), 1.8 m (6 ft.), 3.7 m (12 ft.), and 4.6 m (15 ft.). Joints were sealed if the thickness of the pavement was over 100 mm (4 in.), unless specified. Two types of polypropylene fibers, monofilament and fibrillated, were added to the conventional PCC mix for designated sections. Three additional sections consisted of an asphalt overlay for comparison with the concrete overlay. Three different base preparations were used on the project, consisting of: patching and scarifying, patching only, and cold-in-place recycling. Sensors were placed in various test sections to measure the temperature and strain during and after construction of the overlay. Pullout tests were also conducted at various locations. Beams cylinders were made for each of the PCC mixes and tested for flexural and compressive strengths. Evaluation of the performance will be conducted through December 31, 1999.
Resumo:
This Handbook has been prepared by the Iowa DOT as a guide and supplement to the MUTCD. It provides in one document a large number of illustrations which can be easily adapted to specific conditions by field personnel. It is intended to supersede all previous non-conforming standards now being used throughout the state and to provide uniform guidelines for all agencies, public and private, who must conduct construction and maintenance activities on the streets and highways of the state. The illustrations contained herein serve as a quick reference for field personnel to follow, however, no amount of detailed instructions can adequately cover every situation. For this reason, sound judgment is required in using these illustrations to cover actual field conditions.
Resumo:
In February of 1968 a cooperative research project by the Iowa State Highway Commission (Project No. HR-136) and the University of Iowa, Iowa City, Iowa was initiated in order to determine experimentally the creep and shrinkage characteristics of lightweight-aggregate concrete used in the State of Iowa. This report is concerned with Phase 1 of the Project as described in the Prospectus for the project submitted in November of 1967: "The State Highway Commission is planning to conduct pilot studies in prestressed-lightweight structures fabricated with materials that are proposed for use in bridge structures in the near future. Thus, Phase will have as its immediate objective, investigating the materials to be used in the above mentioned pilot studies.” (1) The work described in this report was also carried out in conjunction with a second cooperative project: "Time-Dependent Camber and Deflection of Non-Composite and Composite Lightweight-Prestressed Concrete Beams" (Project No. HR-137).
Resumo:
This paper carries the rather weighty title of "Evolution of Design Practice at the Iowa State Highway Commission for the Determination of Peak Discharges at .Bridges and Culverts." Hopefully, this evolving process will lead to a more precise definition of a peak rate of runoff for a selected recurrence interval at a particular site. In this paper the author will relate where the Highway Commission has been, is now, and will be going in this art of hydrology. He will then offer some examples at a few sites in Iowa to illustrate the use of the various methods. Finally, he will look ahead to some of the pitfalls still lying in wait for us.
Resumo:
The investigations for this report were initiated in October, 1967, to perform the following: l. Review the current Iowa State Highway Commission roadway geometric design standards and criteria for conformance with national policies and recent research findings with special attention to high way safety. 2. Review the current Iowa State Highway Commission roadway lighting design standards and criteria for conformance with national policies and recent research findings with special attention to high way safety