19 resultados para Thickness measurement.

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to limited budgets and reduced inspection staff, state departments of transportation (DOTs) are in need of innovative approaches for providing more efficient quality assurance on concrete paving projects. The goal of this research was to investigate and test new methods that can determine pavement thickness in real time. Three methods were evaluated: laser scanning, ultrasonic sensors, and eddy current sensors. Laser scanning, which scans the surface of the base prior to paving and then scans the surface after paving, can determine the thickness at any point. Also, scanning lasers provide thorough data coverage that can be used to calculate thickness variance accurately and identify any areas where the thickness is below tolerance. Ultrasonic and eddy current sensors also have the potential to measure thickness nondestructively at discrete points and may result in an easier method of obtaining thickness. There appear to be two viable approaches for measuring concrete pavement thickness during the paving operation: laser scanning and eddy current sensors. Laser scanning has proved to be a reliable technique in terms of its ability to provide virtual core thickness with low variability. Research is still required to develop a prototype system that integrates point cloud data from two scanners. Eddy current sensors have also proved to be a suitable alternative, and are probably closer to field implementation than the laser scanning approach. As a next step for this research project, it is suggested that a pavement thickness measuring device using eddy current sensors be created, which would involve both a handheld and paver-mounted version of the device.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The MIT-Scan-T2 device is marketed as a non-destructive way to determine pavement thickness on both HMA and PCC pavements. PCC pavement thickness determination is an important incentivedisincentive measurement for the Iowa DOT and contractors. The thickness incentive can be as much as 3% of the concrete contact unit price and the disincentive can be as severe as remove and replace. This study evaluated the potential of the MIT device for PCC pavement thickness quality assurance. The limited testing indicates the unit is sufficiently repeatable and accurate enough to replace core drilling as the thickness measurement method. Further study is needed to statistically establish the single user and multi-user/device precision as well as establish an appropriate sampling protocol and PWL specification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, thin whitetopping has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavements. Numerous projects have been constructed and tested; these projects allow researchers to identify the important elements contributing to the projects’ successes. These elements include surface preparation, overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. Although the main factors affecting thin whitetopping performance have been identified by previous research, questions still existed as to the optimum design incorporating these variables. The objective of this research is to investigate the interaction between these variables over time. Laboratory testing and field-testing were planned in order to accomplish the research objective. Laboratory testing involved shear testing of the bond between the portland cement concrete (PCC) overlay and the ACC surface. Field-testing involved falling weight deflectometer deflection responses, measurement of joint faulting and joint opening, and visual distress surveys on the 9.6-mile project. The project was located on Iowa Highway 13 extending north from the city of Manchester, Iowa, to Iowa Highway 3 in Delaware County. Variables investigated included ACC surface preparation, PCC thickness, synthetic fiber reinforcement usage, and joint spacing. This report documents the planning, equipment selection, construction, field changes, and construction concerns of the project built in 2002. The data from this research could be combined with historical data to develop a design specification for the construction of thin, unbonded overlays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this day of the mature highway systems, a new set of problems is facing the highway engineer. The existing infrastructure has aged to or past the design life of the original pavement design. In many cases, increased commercial traffic is creating the need for additional load carrying capacity, causing state highway engineers to consider new alternatives for rehabilitation of existing surfaces. Alternative surface materials, thicknesses, and methods of installation must be identified to meet the needs of individual pavements and budgets. With overlays being one of the most frequently used rehabilitation alternatives, it is important to learn more about the limitations and potential performance of thin bonded portland cement overlays and subsequent rehabilitation. The Iowa ultra-thin project demonstrated the application of thin portland cement concrete overlays as a rehabilitation technique. It combined the variables of base preparation, overlay thickness, slab size, and fiber enhancement into a series of test sections over a 7.2-mile length. This report identifies the performance of the overlays in terms of deflection reduction, reduced cracking, and improved bonding between the portland cement concrete (PCC) and asphalt cement concrete (ACC) base layers. The original research project was designed to evaluate the variables over a 5-year period of time. A second project provided the opportunity to test overlay rehabilitation techniques and continue measurement of the original overlay performance for 5 additional years. All performance indicators identified exceptional performance over the 10-year evaluation period for each of the variable combinations considered. The report summarizes the research methods, results, and identifies future research ideas to aid the pavement overlay designer in the successful implementation of ultra-thin portland cement concrete overlays as an lternative pavement rehabilitation technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, thin whitetopping has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavements. Numerous projects have been constructed and tested, allowing researchers to identify the important elements contributing to the projects’ successes. These elements include surface preparation, overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. Although the main factors affecting thin whitetopping performance have been identified by previous research, questions still existed as to the optimum design incorporating these variables. The objective of this research is to investigate the interaction between these variables over time. Laboratory testing and field testing were conducted to achieve the research objectives. Laboratory testing involved shear testing of the bond between the portland cement concrete (PCC) overlay and the ACC surface. Field testing involved falling weight deflectometer deflection responses, measurement of joint faulting and joint opening, and visual distress surveys on the 9.6-mile project. The project was located on Iowa Highway 13 extending north from the city of Manchester, Iowa, to Iowa Highway 3 in Delaware County. Variables investigated include ACC surface preparation, PCC thickness, slab size, synthetic fiber reinforcement usage, and joint spacing. This report documents the planning, construction, and performance of each variable in the time period from summer 2002 through spring 2006. The project has performed well with only minor distress identification since its construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of pavement roughness has been the concern of highway engineers for more than 70 years. This roughness is referred to as "riding quality" by the traveling public. Pavement roughness evaluating devices have attempted to place either a graphical or numerical value on the public's riding comfort or discomfort. Early graphical roughness recorders had many different designs. In 1900 an instrument called the "Viagraph" was developed by an Irish engineer.' The "Viagraph" consisted of a twelve foot board with graphical recorder drawn over the pavement. The "Profilometer" built in Illinois in 1922 was much more impressive. ' The instrument's recorder was mounted on a frame supported by 32 bicycle wheels mounted in tandem. Many other variations of profilometers with recorders were built but most were difficult to handle and could not secure uniformly reproducible results. The Bureau of Public Roads (BPR) Road Roughness Indicator b u i l t in 1941 is the most widely used numerical roughness recorder.' The BPR Road Roughness Indicator consists of a trailer unit with carefully selected springs, means of dampening, and balanced wheel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes the field application of the tilt sensing method for monitoring movement of the Black Hawk and Karl King Bridges. The study objectives were: to design a data acquisition system for tilt sensing equipment utilizing a telephone telemetry system; to monitor possible movement of the main span pier, Pier No. 2, on the Black Hawk Bridge in Lansing and the possible long-term movement of Pier No. 4 on the Karl King Bridge in Fort Dodge; and to assess the feasibility, reliability, and accuracy of the instrumentation system used in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The primary purpose of this project was to assess the potential of a nondestructive remote sensing system, specifically, ground penetrating subsurface interface radar, for identification and evaluation of D-cracking pavement failures. A secondary purpose was to evaluate the effectiveness of this technique for locating voids under pavements and determining the location of steel reinforcement. From the data collected and the analysis performed to date, the following conclusions can be made regarding the ground penetrating radar system used for this study: (1) steel reinforcement can be accurately located; (2) pavement thickness can be determined; (3) distressed areas in pavements can be located and broadly classified as to severity of deterioration; (4) voids under pavements can be located; and (5) higher resolution recording equipment is required to accurately determine both the thickness of sound pavement remaining over distressed areas and the depth of void areas under pavements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report documents an extensive field program carried out to identify the relationships between soil engineering properties, as measured by various in situ devices, and the results of machine compaction monitoring using prototype compaction monitoring technology developed by Caterpillar Inc. Primary research tasks for this study include the following: (1) experimental testing and statistical analyses to evaluate machine power in terms of the engineering properties of the compacted soil (e.g., density, strength, stiffness) and (2) recommendations for using the compaction monitoring technology in practice. The compaction monitoring technology includes sensors that monitor the power consumption used to move the compaction machine, an on-board computer and display screen, and a GPS system to map the spatial location of the machine. In situ soil density, strength, and stiffness data characterized the soil at various stages of compaction. For each test strip or test area, in situ soil properties were compared directly to machine power values to establish statistical relationships. Statistical models were developed to predict soil density, strength, and stiffness from the machine power values. Field data for multiple test strips were evaluated. The R2 correlation coefficient was generally used to assess the quality of the regressions. Strong correlations were observed between averaged machine power and field measurement data. The relationships are based on the compaction model derived from laboratory data. Correlation coefficients (R2) were consistently higher for thicker lifts than for thin lifts, indicating that the depth influencing machine power response exceeds the representative lift thickness encountered under field conditions. Caterpillar Inc. compaction monitoring technology also identified localized areas of an earthwork project with weak or poorly compacted soil. The soil properties at these locations were verified using in situ test devices. This report also documents the steps required to implement the compaction monitoring technology evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, several new cutting edges for removal of ice from the roadway were tested in a series of closed road tests. These new cutting edges consisted of a variety of serrated shapes. The study also included measurement of ice scraping forces by in-service trucks. These trucks were instrumented in a similar manner as the truck used in the closed-road tests. Results from the closed-road and in-service tests were analyzed by two parameters. The first parameter is the scraping effectiveness, which is defined as the average horizontal force experienced by a cutting edge. The amount of ice scraped from the roadway is directly proportional to the magnitude of the scraping effectiveness. Thus an increase in scraping effectiveness indicates an increase in the amount of ice being scraped from the roadway. The second parameter is force angle, which is defined as tan to the -1 power [vertical force/horizontal force]. A combination of a minimal force angle and a maximized scraping effectiveness represents a case in which the maximal amount of ice is being removed from the pavement without an exceptionally large vertical force. Results indicate that each cutting edge produced a maximal scraping effectiveness with a testing configuration of a 15 deg blade angle and a 23,000 lb. download force. Results also indicate that each cutting edge produced a minimal force angle with a testing configuration of a 15 deg blade angle and a 10,000 lb. download force. Results from the in-service trucks produced similar data and also similar trends within the data when compared to the results of the closed-road tests. This result is most important, as it suggests that the closed-road tests do provide an accurate measure of ice scraping forces for a given blade and configuration of that blade. Thus if the closed-road tests indicate that certain blades perform well, there is now excellent reason to conduct full scale tests of such blades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This final report for Phase 1 of the research on epoxy-coated, prestressing strands in precast prestressed concrete (PC) panels has been published in two volumes. This volume, Volume 1--Technical Report, contains the problem description, literature review, and survey results; descriptions of the test specimens, experimental tests, and analytical models; discussions of the analytical and experimental results; summary, conclusions, and recommendations; list of references; and acknowledgment. Volume 2--Supplemental Report contains additional information in the form of summarized responses to the questionnaires; graphs showing the strand forces; figures showing the geometry of the specimens and concrete crack patterns that formed in the strand transfer length and strand development length specimens; and graphs of the concrete strains in the strand transfer length specimens, load-point deflections, and strand-slip measurements for the strand development length specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Winter weather in Iowa is often unpredictable and can have an adverse impact on traffic flow. The Iowa Department of Transportation (Iowa DOT) attempts to lessen the impact of winter weather events on traffic speeds with various proactive maintenance operations. In order to assess the performance of these maintenance operations, it would be beneficial to develop a model for expected speed reduction based on weather variables and normal maintenance schedules. Such a model would allow the Iowa DOT to identify situations in which speed reductions were much greater than or less than would be expected for a given set of storm conditions, and make modifications to improve efficiency and effectiveness. The objective of this work was to predict speed changes relative to baseline speed under normal conditions, based on nominal maintenance schedules and winter weather covariates (snow type, temperature, and wind speed), as measured by roadside weather stations. This allows for an assessment of the impact of winter weather covariates on traffic speed changes, and estimation of the effect of regular maintenance passes. The researchers chose events from Adair County, Iowa and fit a linear model incorporating the covariates mentioned previously. A Bayesian analysis was conducted to estimate the values of the parameters of this model. Specifically, the analysis produces a distribution for the parameter value that represents the impact of maintenance on traffic speeds. The effect of maintenance is not a constant, but rather a value that the researchers have some uncertainty about and this distribution represents what they know about the effects of maintenance. Similarly, examinations of the distributions for the effects of winter weather covariates are possible. Plots of observed and expected traffic speed changes allow a visual assessment of the model fit. Future work involves expanding this model to incorporate many events at multiple locations. This would allow for assessment of the impact of winter weather maintenance across various situations, and eventually identify locations and times in which maintenance could be improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field program of strain and deflection measurements was conducted by the Construction Technology Laboratories (CTL) for the Iowa Department of Transportation. The objective of the field measurement program was to obtain information on bonded concrete resurfaced pavements that can be used as a data base for verifying bonded resurfacing thickness design procedures. Data gathered during the investigation included a visual condition survey, engineering properties of the original and resurfacing concrete, load related strain and deflection measurements, and temperature related curl (deflection) measurements. Resurfacing is basically the addition of a surface layer to extend the life of an existing pavement. Portland cement concrete has been used to resurface existing pavements since about 1913.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This final report for Phase 1 of the research on epoxy-coated, prestressing strands in precast prestressed concrete (PC) panels has been published in two volumes. Volume 1--Technical Report contains the problem description, literature review, and survey results; descriptions of the test specimens, experimental tests, and analytical models; discussions of the analytical and experimental results; summary, conclusions, and recommendations; list of references; and acknowledgments. Volume 2--Supplemental Report contains additional information in the form of appendix material for Volume 1 on the questionnaires, strand forces, geometry of the specimens, concrete crack patterns that formed in the strand transfer length and strand development length specimens, concrete strains in the strand transfer length specimens, and load-point deflections and strand-slip measurements for the strand development length specimens. Appendix A contains the questionnaires that were sent to the design agencies and precast concrete producers. A summary of the results to the questions on the surveys are given as the number of respondents who provided the same answers and as paraphrased comments from the respondents. Appendix B contains graphs of strand force versus time, strand force versus temperature, and strand force versus strand cutting sequence for the concrete castings. Appendix C contains figures that show the location of each specimen in the prestress bed, the geometrical configurations for the strand transfer length (T-type) specimens and strand development length (D-type) specimens, and the concrete cracks that developed in some of the T-type specimens when they were prestressed. Appendix D contains figures that show the concrete cracks that developed in the D-type specimens during the strand development length tests. For each of these tests, the sequence of the failure for the specimen is specified. Appendix E contains graphs of concrete strain versus distance from the end of the T-type specimens that were instrumented with internal embedment strain gages. Appendix F contains graphs of load versus load-point deflection and load versus strand-slip for the strand development length tests of the D-type specimens.