10 resultados para Thermal modeling
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This monthly report from the Iowa Department of Natural Resources is about the water quality management of Iowa's rivers, streams and lakes.
Resumo:
The 2007 Iowa General Assembly, recognizing the increased demand for water to support the growth of industries and municipalities, approved funding for the first year of a multi-year evaluation and modeling of Iowa’s major aquifers by the Iowa Department of Natural Resources. The task of conducting this evaluation and modeling was assigned to the Iowa Geological and Water Survey (IGWS). The first aquifer to be studied was the Lower Dakota aquifer in a sixteen county area of northwest Iowa.
Resumo:
The present research project was designed to determine thermal properties, such as coefficient of thermal expansion (CTE) and thermal conductivity, of Iowa concrete pavement materials. These properties are required as input values by the Mechanistic-Empirical Pavement Design Guide (MEPDG). In this project, a literature review was conducted to determine the factors that affect thermal properties of concrete and the existing prediction equations for CTE and thermal conductivity of concrete. CTE tests were performed on various lab and field samples of portland cement concrete (PCC) at the Iowa Department of Transportation and Iowa State University. The variations due to the test procedure, the equipment used, and the consistency of field batch materials were evaluated. The test results showed that the CTE variations due to test procedure and batch consistency were less than 5%, and the variation due to the different equipment was less than 15%. Concrete CTE values were significantly affected by different types of coarse aggregate. The CTE values of Iowa concrete made with limestone+graval, quartzite, dolomite, limestone+dolomite, and limestone were 7.27, 6.86, 6.68, 5.83, and 5.69 microstrain/oF (13.08, 12.35, 12.03, 10.50, and 10.25 microstrain/oC), respectively, which were all higher than the default value of 5.50 microstrain/oF in the MEPDG program. The thermal conductivity of a typical Iowa PCC mix and an asphalt cement concrete (ACC) mix (both with limestone as coarse aggregate) were tested at Concrete Technology Laboratory in Skokie, Illinois. The thermal conductivity was 0.77 Btu/hr•ft•oF (1.33 W/m•K) for PCC and 1.21 Btu/hr•ft•oF (2.09 W/m•K) for ACC, which are different from the default values (1.25 Btu/hr•ft•oF or 2.16 W/m•K for PCC and 0.67 Btu/hr•ft•oF or 1.16 W/m•K for ACC) in the MEPDG program. The investigations onto the CTE of ACC and the effects of concrete materials (such as cementitious material and aggregate types) and mix proportions on concrete thermal conductivity are recommended to be considered in future studies.
Resumo:
The thermal properties of concrete materials, such as coeffi cient of thermal expansion (CTE), thermal conductivity, and heat capacity, are required by the MEPDG program as the material inputs for pavement design. However, a limited amount of test data is available on the thermal properties of concrete in Iowa. The default values provided by the MEPDG program may not be suitable for Iowa concrete, since aggregate characteristics have signifi cant infl uence on concrete thermal properties.
Resumo:
The work described in this report documents the activities performed for the evaluation, development, and enhancement of the Iowa Department of Transportation (DOT) pavement condition information as part of their pavement management system operation. The study covers all of the Iowa DOT’s interstate and primary National Highway System (NHS) and non-NHS system. A new pavement condition rating system that provides a consistent, unified approach in rating pavements in Iowa is being proposed. The proposed 100-scale system is based on five individual indices derived from specific distress data and pavement properties, and an overall pavement condition index, PCI-2, that combines individual indices using weighting factors. The different indices cover cracking, ride, rutting, faulting, and friction. The Cracking Index is formed by combining cracking data (transverse, longitudinal, wheel-path, and alligator cracking indices). Ride, rutting, and faulting indices utilize the International Roughness Index (IRI), rut depth, and fault height, respectively.
Resumo:
Hydrologic analysis is a critical part of transportation design because it helps ensure that hydraulic structures are able to accommodate the flow regimes they are likely to see. This analysis is currently conducted using computer simulations of water flow patterns, and continuing developments in elevation survey techniques result in higher and higher resolution surveys. Current survey techniques now resolve many natural and anthropogenic features that were not practical to map and, thus, require new methods for dealing with depressions and flow discontinuities. A method for depressional analysis is proposed that uses the fact that most anthropogenically constructed embankments are roughly more symmetrical with greater slopes than natural depressions. An enforcement method for draining depressions is then analyzed on those depressions that should be drained. This procedure has been evaluated on a small watershed in central Iowa, Walnut Creek of the South Skunk River, HUC12 # 070801050901, and was found to accurately identify 88 of 92 drained depressions and place enforcements within two pixels, although the method often tries to drain prairie pothole depressions that are bisected by anthropogenic features.
Resumo:
In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improving work-zone flow-through merge points depends on the behavior of individual drivers. By better understanding driver behavior, traffic control plans, work zone policies, and countermeasures can be better targeted to reinforce desirable lane closure merging behavior, leading to both improved safety and work-zone capacity. The researchers collected data for two work-zone scenarios that included lane drops with one scenario on the Interstate and the other on an urban arterial roadway. The researchers then modeled and calibrated these scenarios in VISSIM using real-world speeds, travel times, queue lengths, and merging behaviors (percentage of vehicles merging upstream and near the merge point). Once built and calibrated, the researchers modeled strategies for various countermeasures in the two work zones. The models were then used to test and evaluate how various merging strategies affect safety and operations at the merge areas in these two work zones.
Resumo:
The major objective of this research project was to use thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in portland cement concrete. Twenty-two different carbonate aggregate samples were subjected to a chemical testing scheme that included: • bulk chemistry (major, minor and selected trace elements) • bulk mineralogy (minor phases concentrated by acid extraction) • solid-solution in the major carbonate phases • crystallite size determinations for the major carbonate phases • a salt treatment study to evaluate the impact of deicer salts Test results from these different studies were then compared to information that had been obtained using thermogravimetric analysis techniques. Since many of the limestones and dolomites that were used in the study had extensive field service records it was possible to correlate many of the variables with service life. The results of this study have indicated that thermogravimetric analysis can play an important role in categorizing carbonate aggregates. In fact, with modern automated thermal analysis systems it should be possible to utilize such methods on a quality control basis. Strong correlations were found between several of the variables that were monitored in this study. In fact, several of the variables exhibited significant correlations to concrete service life. When the full data set was utilized (n = 18), the significant correlations to service life can be summarized as follows ( a = 5% level): • Correlation coefficient, r, = -0.73 for premature TG loss versus service life. • Correlation coefficient, r, = 0.74 for relative crystallite size versus service life. • Correlation coefficient, r, = 0.53 for ASTM C666 durability factor versus service life. • Correlation coefficient, r, = -0.52 for acid-insoluble residue versus service life. Separation of the carbonate aggregates into their mineralogical categories (i.e., calcites and dolomites) tended to increase the correlation coefficients for some specific variables (r sometimes approached 0.90); however, the reliability of such correlations was questionable because of the small number of samples that were present in this study.
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.
Resumo:
The major objective of this research project is to utilize thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in Portland cement concrete. The first year of this project has been spent obtaining and analyzing limestone and dolomite samples that exhibit a wide range of field service performance. Most of the samples chosen for the study also had laboratory durability test information (ASTM C 666, method B) that was readily available. Preliminary test results indicate that a strong relationship exists between the average crystallite size of the limestone (calcite) specimens and their apparent decomposition temperatures as measured by thermogravimetric analysis. Also, premature weight loss in the thermogravimetric analysis tests appeared to be related to the apparent decomposition temperature of the various calcite test specimens.