17 resultados para Theoretical analyses
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Report produced by Iowa Department of Economic Development
Resumo:
In an attempt to solve the bridge problem faced by many county engineers, this investigation focused on a low cost bridge alternative that consists of using railroad flatcars (RRFC) as the bridge superstructure. The intent of this study was to determine whether these types of bridges are structurally adequate and potentially feasible for use on low volume roads. A questionnaire was sent to the Bridge Committee members of the American Association of State Highway and Transportation Officials (AASHTO) to determine their use of RRFC bridges and to assess the pros and cons of these bridges based on others’ experiences. It was found that these types of bridges are widely used in many states with large rural populations and they are reported to be a viable bridge alternative due to their low cost, quick and easy installation, and low maintenance. A main focus of this investigation was to study an existing RRFC bridge that is located in Tama County, IA. This bridge was analyzed using computer modeling and field load testing. The dimensions of the major structural members of the flatcars in this bridge were measured and their properties calculated and used in an analytical grillage model. The analytical results were compared with those obtained in the field tests, which involved instrumenting the bridge and loading it with a fully loaded rear tandem-axle truck. Both sets of data (experimental and theoretical) show that the Tama County Bridge (TCB) experienced very low strains and deflections when loaded and the RRFCs appeared to be structurally adequate to serve as a bridge superstructure. A calculated load rating of the TCB agrees with this conclusion. Because many different types of flatcars exist, other flatcars were modeled and analyzed. It was very difficult to obtain the structural plans of RRFCs; thus, only two additional flatcars were analyzed. The results of these analyses also yielded very low strains and displacements. Taking into account the experiences of other states, the inspection of several RRFC bridges in Oklahoma, the field test and computer analysis of the TCB, and the computer analysis of two additional flatcars, RRFC bridges appear to provide a safe and feasible bridge alternative for low volume roads.
Resumo:
The feasibility of substituting fibercomposite (FC) (thermoset) pavement dowels for steel pavement dowels was investigated in this research project. Load transfer capacity, flexural capacity, and material properties were examined. The objectives of Part 1 of this final report included the shear behavior and strength deformations of FC dowel bars without aging. Part 2 will contain the aging effects. This model included the effects of modulus of elasticity for the pavement dowel and concrete, dowel diameter, subgrade stiffness, and concrete compressive strength. An experimental investigation was carried out to establish the modulus of dowel support which is an important parameter for the analysis of dowels. The experimental investigation included measured deflections, observed behavioral characteristics, and failure mode observations. An extensive study was performed on various shear testing procedures. A modified Iosipescu shear method was selected for the test procedure. Also, a special test frame was designed and fabricated for this procedure. The experimental values of modulus of support for shear and FC dowels were used for arriving at the critical stresses and deflections for the theoretical model developed. Different theoretical methods based on analyses suggested by Timoshenko, Friberg, Bradbury, and Westergaard were studied and a comprehensive theoretical model was developed. The fibercomposite dowels were found to provide strengths and behavioral characteristics that appear promising as a potential substitute for steel dowels.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. From 1983 to 2014, this monitoring effort was known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Beginning in 2015, the only statewide fish contaminant-monitoring program in Iowa was changed to the Iowa Fish Tissue Monitoring Program (IFTMP). The IFTMP is administered by IDNR and the tissue analyses are completed at the SHL. Historically, the data generated from the IFTMP have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The IFTMP incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. From 1983 to 2014, this monitoring effort was known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Beginning in 2015, the only statewide fish contaminant-monitoring program in Iowa was changed to the Iowa Fish Tissue Monitoring Program (IFTMP). The IFTMP is administered by IDNR and the analyses are completed at the SHL. Historically, the data generated from the IFTMP have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The IFTMP incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) follow-up, 3) trend, 4) turtle, and 5) random.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) trend, 3) follow-up, 4) turtle, and 5) random.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the State Hygienic Laboratory (SHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates five different types of monitoring sites: 1) status, 2) trend, 3) random, 4) follow-up and 5) turtle.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up. New for 2009 was the one-time inclusion of snapping turtle tissue as part of the Iowa RAFT sampling program.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006a). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of Iowans consuming fish. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.