2 resultados para Thematic cartography
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Researchers should continuously ask how to improve the models we rely on to make financial decisions in terms of the planning, design, construction, and maintenance of roadways. This project presents an alternative tool that will supplement local decision making but maintain a full appreciation of the complexity and sophistication of today’s regional model and local traffic impact study methodologies. This alternative method is tailored to the desires of local agencies, which requested a better, faster, and easier way to evaluate land uses and their impact on future traffic demands at the sub-area or project corridor levels. A particular emphasis was placed on scenario planning for currently undeveloped areas. The scenario planning tool was developed using actual land use and roadway information for the communities of Johnston and West Des Moines, Iowa. Both communities used the output from this process to make regular decisions regarding infrastructure investment, design, and land use planning. The City of Johnston case study included forecasting future traffic for the western portion of the city within a 2,600-acre area, which included 42 intersections. The City of West Des Moines case study included forecasting future traffic for the city’s western growth area covering over 30,000 acres and 331 intersections. Both studies included forecasting a.m. and p.m. peak-hour traffic volumes based upon a variety of different land use scenarios. The tool developed took goegraphic information system (GIS)-based parcel and roadway information, converted the data into a graphical spreadsheet tool, allowed the user to conduct trip generation, distribution, and assignment, and then to automatically convert the data into a Synchro roadway network which allows for capacity analysis and visualization. The operational delay outputs were converted back into a GIS thematic format for contrast and further scenario planning. This project has laid the groundwork for improving both planning and civil transportation decision making at the sub-regional, super-project level.
Resumo:
Global positioning systems (GPS) offer a cost-effective and efficient method to input and update transportation data. The spatial location of objects provided by GPS is easily integrated into geographic information systems (GIS). The storage, manipulation, and analysis of spatial data are also relatively simple in a GIS. However, many data storage and reporting methods at transportation agencies rely on linear referencing methods (LRMs); consequently, GPS data must be able to link with linear referencing. Unfortunately, the two systems are fundamentally incompatible in the way data are collected, integrated, and manipulated. In order for the spatial data collected using GPS to be integrated into a linear referencing system or shared among LRMs, a number of issues need to be addressed. This report documents and evaluates several of those issues and offers recommendations. In order to evaluate the issues associated with integrating GPS data with a LRM, a pilot study was created. To perform the pilot study, point features, a linear datum, and a spatial representation of a LRM were created for six test roadway segments that were located within the boundaries of the pilot study conducted by the Iowa Department of Transportation linear referencing system project team. Various issues in integrating point features with a LRM or between LRMs are discussed and recommendations provided. The accuracy of the GPS is discussed, including issues such as point features mapping to the wrong segment. Another topic is the loss of spatial information that occurs when a three-dimensional or two-dimensional spatial point feature is converted to a one-dimensional representation on a LRM. Recommendations such as storing point features as spatial objects if necessary or preserving information such as coordinates and elevation are suggested. The lack of spatial accuracy characteristic of most cartography, on which LRM are often based, is another topic discussed. The associated issues include linear and horizontal offset error. The final topic discussed is some of the issues in transferring point feature data between LRMs.