8 resultados para Test content

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the hazardous nature of chemical asphalt extraction agents, nuclear gauges have become an increasingly popular method of determining the asphalt content of a bituminous mix. This report details the results of comparisons made between intended, tank stick, extracted, and nuclear asphalt content determinations. A total of 315 sets of comparisons were made on samples that represented 110 individual mix designs and 99 paving projects. All samples were taken from 1987 construction projects. In addition to the comparisons made, seventeen asphalt cement samples were recovered for determination of penetration and viscosity. Results were compared to similar tests performed on the asphalt assurance samples in an attempt to determine the amount of asphalt hardening that can be expected due to the hot mix process. Conclusions of the report are: 1. Compared to the reflux extraction procedure, nuclear asphalt content gauges determine asphalt content of bituminous mixes with much greater accuracy and comparable precision. 2. As a means for determining asphalt content, the nuclear procedure should be used as an alternate to chemical extractions whenever possible. 3. Based on penetration and viscosity results, softer grade asphalts undergo a greater degree 'of hardening due to hot mix processing than do harder grades, and asphalt viscosity changes caused by the mixing process are subject to much more variability than are changes in penetration. 4. Based on changes in penetration and viscosity, the Thin Film Oven Test provides a reasonable means of estimating how much asphalt hardening can be anticipated due to exposure to the hot mix processing environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To conserve natural resources and energy, the amount of recycled asphalt pavement has been steadily increasing in the construction of asphalt pavements. The objective of this study is to develop quality standards for inclusion of high RAP content. To determine if the higher percentage of RAP materials can be used on Iowa’s state highways, three test sections with target amounts of RAP materials of 30%, 35% and 40% by weight were constructed on Highway 6 in Iowa City. To meet Superpave mix design requirements for mixtures with high RAP contents, it was necessary to fractionate the RAP materials. Three test sections with actual RAP materials of 30.0%, 35.5% and 39.2% by weight were constructed and the average field densities from the cores were measured as 95.3%, 94.0%, and 94.3%, respectively. Field mixtures were compacted in the laboratory to evaluate moisture sensitivity using a Hamburg Wheel Tracking Device. After 20,000 passes, rut depths were less than 3mm for mixtures obtained from three test sections. The binder was extracted from the field mixtures from each test section and tested to identify the effects of RAP materials on the performance grade of the virgin binder. Based on Dynamic Shear Rheometer and Bending Beam Rheometer tests, the virgin binders (PG 64-28) from test sections with 30.0%, 35.5% and 39.2% RAP materials were stiffened to PG 76-22, PG 76-16, and PG 82-16, respectively. The Semi-Circular Bending (SCB) test was performed on laboratory compacted field mixtures with RAP amounts of 30.0%, 35.5% and 39.2% at two different temperatures of -18 and -30 °C. As the test temperature decreased, the fracture energy decreased and the stiffness increased. As the RAP amount increased, the stiffness increased and the fracture energy decreased. Finally, a condition survey of the test sections was conducted to evaluate their short-term pavement performance and the reflective transverse cracking did not increase as RAP amount was increased from 30.0% to 39.2%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concrete durability may be considered as the ability to maintain serviceability over the design life without significant deterioration, and is generally a direct function of the mixture permeability. Therefore, reducing permeability will improve the potential durability of a given mixture and, in turn, improve the serviceability and longevity of the structure. Given the importance of this property, engineers often look for methods that can decrease permeability. One approach is to add chemical compounds known as integral waterproofing admixtures or permeability-reducing admixtures, which help fill and block capillary pores in the paste. Currently, there are no standard approaches to evaluate the effectiveness of permeability-reducing admixtures or to compare different products in the US. A review of manufacturers’ data sheets shows that a wide range of test methods have been used, and rarely are the same tests used on more than one product. This study investigated the fresh and hardened properties of mixtures containing commercially available hydrophilic and hydrophobic types of permeability-reducing admixtures. The aim was to develop a standard test protocol that would help owners, engineers, and specifiers compare different products and to evaluate their effects on concrete mixtures that may be exposed to hydrostatic or non-hydrostatic pressure. In this experimental program, 11 concrete mixtures were prepared with a fixed water-to-cement ratio and cement content. One plain mixture was prepared as a reference, 5 mixtures were prepared using the recommended dosage of the different permeability-reducing admixtures, and 5 mixtures were prepared using double the recommended dosage. Slump, air content, setting time, compressive and flexural strength, shrinkage, and durability indicating tests including electrical resistivity, rapid chloride penetration, air permeability, permeable voids, and sorptivity tests were conducted at various ages. The data are presented and recommendations for a testing protocol are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (ASR). The available alkali test, which is commonly used to measure fly ash alkali, takes approximately 35 days for execution and reporting. Hence, in many instances the fly ash has already been incorporated into concrete before the test results are available. This complicates the job of the fly ash marketing agencies and it leads to disputes with fly ash users who often are concerned with accepting projects that contain materials that fail to meet specification limits. The research project consisted of a lab study and a field study. The lab study focused on the available alkali test and how fly ash alkali content impacts common performance tests (mortar-bar expansion tests). Twenty-one fly ash samples were evaluated during the testing. The field study focused on the inspection and testing of selected, well documented pavement sites that contained moderately reactive fine aggregate and high-alkali fly ash. A total of nine pavement sites were evaluated. Two of the sites were control sites that did not contain fly ash. The results of the lab study indicated that the available alkali test is prone to experimental errors that cause poor agreement between testing labs. A strong (linear) relationship was observed between available alkali content and total alkali content of Class C fly ash. This relationship can be used to provide a quicker, more precise method of estimating the available alkali content. The results of the field study failed to link the use of high-alkali fly ash with the occurrence of ASR in the various concrete sites. Petrographic examination of the pavement cores indicated that Wayland sand is an ASR-sensitive aggregate. This was in good agreement with Iowa DOT field service records. It was recommended that preventative measures should be used when this source of sand is used in concrete mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa State Highway Commission Laboratory is called upon to determine the cement content of hardened concrete when field problems relating to batch weights are encountered. The standard test for determining the cement content is ASTM C-85. An investigation of this method by the New Jersey State Highway Department involving duplicate samples and four cooperating laboratories produced very erratic results, however, the results obtained by this method have not been directly compared to known cement contents of concrete made with various cements and various aggregates used in Iowa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on results of an evaluation performed during the winter of 1985-86, six Troxler 3241-B Asphalt Content Gauges were purchased for District use in monitoring project asphalt contents. Use of these gauges will help reduce the need for chemical based extractions. Effective use of the gauges depends on the accurate preparation and transfer of project mix calibrations from the Central Lab to the Districts. The objective of this project was to evaluate the precision and accuracy of a gauge in determining asphalt contents and to develop a mix calibration transfer procedure for implementation during the 1987 construction. The first part of the study was accomplished by preparing mix calibrations in the Central Lab gauge and taking multiple measurements of a sample with known asphalt content. The second part was accomplished by preparing transfer pans, obtaining count data on the pans using each gauge, and transferring calibrations from one gauge to another through the use of calibration transfer equations. The transferred calibrations were tested by measuring samples with a known asphalt content. The study established that the Troxler 3241-B Asphalt Content Gauge yields results of acceptable accuracy and precision as evidenced by a standard deviation of 0.04% asphalt content on multiple measurements of the same sample. The calibration transfer procedure proved feasible and resulted in the calibration transfer portion of Materials I.M. 335 - Method of Test For Determining the Asphalt Content of Bituminous Mixtures by the Nuclear Method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plastic air content is typically tested by the pressure method, ASTM C138. Loss of air content through the paver has been shown to exceed 2 percent at times. Research has shown that early deterioration of pavements in Iowa may be directly or indirectly related to low or inadequate air content. Hardened air content is typically checked using the linear traverse method, ASTM C457. The linear traverse method is very time consuming and could not be used on a production scale. A quick and effective method of testing in place air content is needed. Research has shown a high degree of correlation with the high-pressure method of determining air content of hardened concrete versus plastic air content in laboratory conditions. This research indicated that air contents are more variable when comparing core results to plastic air content, although the overall average for the air content was comparable. Perhaps, the location of the plastic air content test, obtained from construction records, versus location of the cores was not as accurate as needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The previous research performed laboratory experiments to measure the impacts of the curing on the indirect tensile strength of both CIR-foam and CIR-emulsion mixtures. However, a fundamental question was raised during the previous research regarding a relationship between the field moisture content and the laboratory moisture content. Therefore, during this research, both temperature and moisture conditions were measured in the field by embedding the sensors at a midpoint and a bottom of the CIR layer. The main objectives of the research are to: (1) measure the moisture levels throughout a CIR layer and (2) develop a moisture loss index to determine the optimum curing time of CIR layer before HMA overlay. To develop a set of moisture loss indices, the moisture contents and temperatures of CIR-foam and CIR-emulsion layers were monitored for five months. Based on the limited field experiment, the following conclusions are derived: 1. The moisture content of the CIR layer can be monitored accurately using the capacitance type moisture sensor. 2. The moisture loss index for CIR layers is a viable tool in determining the optimum timing for an overlay without measuring actual moisture contents. 3. The modulus back-calculated based on the deflection measured by FWD seemed to be in a good agreement with the stiffness measured by geo-gauge. 4. The geo-gauge should be considered for measuring the stiffness of CIR layer that can be used to determine the timing of an overlay. 5. The stiffness of CIR-foam layer increased as a curing time increased and it seemed to be more influenced by a temperature than moisture content. The developed sets of moisture loss indices based on the field measurements will help pavement engineers determine an optimum timing of an overlay without continually measuring moisture conditions in the field using a nuclear gauge.