12 resultados para Tension loads
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
During the harvest season in Iowa, it is common to have single axle loads on secondary roads and bridges that are excessive (typical examples are grain carts) and well beyond normal load limits. Even though these excessive loads occur only during a short time of the year, they may do significant damage to pavements and bridges. In addition, the safety of some bridges may be compromised because of the excessive loads, and sometimes there may be little indication to the users that damage may be imminent. At this time there are no Iowa laws regulating axle loads allowed for agricultural equipment. This study looks at the potential problems this may cause on secondary roads and timber stringer bridges. Both highway pavement and timber bridges are evaluated in this report. A section (panel) of Iowa PCC paved county road was chosen to study the effects of heavy agricultural loads on pavements. Instrumentation was applied to the panel and a heavily loaded grain cart was rolled across. The collected data were analyzed for any indication of excessive stresses of the concrete. The second study, concerning excessive loads on timber stringer bridges, was conducted in the laboratory. Four bridge sections were constructed and tested. Two of the sections contained five stringers and two sections had three stringers. Timber for the bridges came from a dismantled bridge, and deck panels were cut from new stock. All timber was treated with creosote. A hydraulic load was applied at the deck mid-span using a foot print representing a tire from a typical grain cart. Force was applied until failure of the system resulted. The collected data were evaluated to provide indications of load distribution and for comparison with expected wheel loads for a typical heavily loaded single axle grain cart. Results of the pavement tests showed that the potential of over-stressing the pavement is a possibility. Even though most of the tension stress levels recorded were below the rupture strength of the concrete, there were a few instances where the indicated tension stress level exceeded the concrete rupture strength. Results of the bridge tests showed that when the static ultimate load capacity of the timber stringer bridge sections was reached, there was sudden loss of capacity. Prior to reaching this ultimate capacity, the load sharing between the stringers was very uniform. The failure was characterized by loss of flexural capacity of the stringers. In all tests, the ultimate test load exceeded the wheel load that would be applied by an 875 bushel single axle grain cart.
Resumo:
Many state, county, and local agencies are faced with deteriorating bridge infrastructure composed of a large percentage of relatively short to medium span bridges. In many cases, these older structures are rolled or welded longitudinal steel stringers acting compositely with a reinforced concrete deck. Most of these bridges, although still in service, need some level of strengthening due to increases in legal live loads or loss of capacity due to deterioration. Although these bridges are overstressed in most instances, they do not warrant replacement; thus, structurally efficient but cost-effective means of strengthening needs to be employed. In the past, the use of bolted steel cover plates or angles was a common retrofit option for strengthening such bridges. However, the time and labor involved to attach such a strengthening system can sometimes be prohibitive. This project was funded through the Federal Highway Administration’s Innovative Bridge Research and Construction program. The goal is to retrofit an existing structurally deficient, three-span continuous steel stringer bridge using an innovative technique that involves the application of post-tensioning forces; the post-tensioning forces were applied using fiber reinforced polymer post-tensioning bars. When compared to other strengthening methods, the use of carbon fiber reinforced polymer composite materials is very appealing in that they are highly resistant to corrosion, have a low weight, and have a high tensile strength. Before the post-tensioning system was installed, a diagnostic load test was conducted on the subject bridge to establish a baseline behavior of the unstrengthened bridge. During the process of installing the post-tensioning hardware and stressing the system, both the bridge and the post-tensioning system were monitored. The installation of the hardware was followed by a follow-up diagnostic load test to assess the effectiveness of the post-tensioning strengthening system. Additional load tests were performed over a period of two years to identify any changes in the strengthening system with time. Laboratory testing of several typical carbon fiber reinforced polymer bar specimens was also conducted to more thoroughly understand their behavior. This report documents the design, installation, and field testing of the strengthening system and bridge.
Resumo:
Iowa has the same problem that confronts most states in the United States: many bridges constructed more than 20 years ago either have deteriorated to the point that they are inadequate for original design loads or have been rendered inadequate by changes in design/maintenance standards or design loads. Inadequate bridges require either strengthening or posting for reduced loads. A sizeable number of single span, composite concrete deck - steel I beam bridges in Iowa currently cannot be rated to carry today's design loads. Various methods for strengthening the unsafe bridges have been proposed and some methods have been tried. No method appears to be as economical and promising as strengthening by post-tensioning of the steel beams. At the time this research study was begun, the feasibility of posttensioning existing composite bridges was unknown. As one would expect, the design of a bridge-strengthening scheme utilizing post-tensioning is quite complex. The design involves composite construction stressed in an abnormal manner (possible tension in the deck slab), consideration of different sizes of exterior and interior beams, cover-plated beams already designed for maximum moment at midspan and at plate cut-off points, complex live load distribution, and distribution of post-tensioningforces and moments among the bridge beams. Although information is available on many of these topics, there is miminal information on several of them and no information available on the total design problem. This study, therefore, is an effort to gather some of the missing information, primarily through testing a half-size bridge model and thus determining the feasibility of strengthening composite bridges by post-tensioning. Based on the results of this study, the authors anticipate that a second phase of the study will be undertaken and directed toward strengthening of one or more prototype bridges in Iowa.
Resumo:
Iowa's county road system includes several thousands of miles of paved roads which consist of Portland cement concrete (PCC) surfaces, asphalt cement concrete (ACC) surfaces, and combinations of thin surface treatments such as seal coats and slurries. These pavements are relatively thin pavements when compared to the state road system and therefore are more susceptible to damage from heavy loads for which they were not designed. As the size of the average farm in Iowa has increased, so have the size and weights of implements of husbandry. These implements typically have fewer axles than a truck hauling the same weight would be required to have; in other words, some farm implements have significantly higher axle weights than would be legal for semi-trailers. Since stresses induced in pavements are related to a vehicle's axle weight, concerns have been raised among county and state engineers regarding the possible damage to roadway surfaces that could result from some of these large implements of husbandry. Implements of husbandry on Iowa's highway system have traditionally not been required to comply with posted weight embargo on bridges or with regulations regarding axle-weight limitations on roadways. In 1999, with House File 651, the Iowa General Assembly initiated a phased program of weight restrictions for implements of husbandry. To help county and state engineers and the Iowa legislature understand the effects of implements of husbandry on Iowa's county roads, the following study was conducted. The study investigated the effects of variously configured grain carts, tank wagons, and fence-line feeders on Iowa's roadways, as well as the possible mitigating effects of flotation tires and tracks on the transfer of axle weights to the roadway. The study was accomplished by conducting limited experimental and analytical research under static loading conditions
Resumo:
Removal of ice from roads is of the more challenging task in winter highway maintenance. The best mechanical method is to use a truck with underbody plow blade, but such equipment is not available to all agencies charged with winter maintenance operations. While counties and cities often use motor graders to scrape ice, it would be of great benefit if front mounted plows could be used effectively for ice removal. To reveal and understand the factors that influence the performance of these plows, measurement of the forces experienced by the plow blades during ice scraping is desirable. This study explores the possibility of using accelerometers to determine the forces on a front-mounted plow when scraping ice. The plow was modeled by using a dynamic approach. The forces on the plow were to be determined by the measurement of the accelerations of the plow. Field tests were conducted using an "as is" front-mounted plow instrumented with accelerometers. The results of the field tests indicate that in terms of ice removal, the front-mounted plow is not favorable equipment. The major problem in this study is that the front mounted plow was not able to cut ice, and therefore experienced no significant scraping forces. However, the use of accelerometers seems to be promising for analyzing the vibration problems of the front-mounted plow.
Resumo:
One of the more severe winter hazards is ice or compacted snow on roadways. While three methods are typically used to combat ice (salting, sanding and scraping), relatively little effort has been applied to improve methods of scraping ice from roads. In this project, a new test facility has been developed, comprising a truck with an underbody blade, which has been instrumented such that the forces to scrape ice from a pavement can be measured. A test site has been used, which is not accessible to the public, and ice covers have been sprayed onto the pavement and subsequently scraped from it, while the scraping loads have been recorded. Three different cutting edges have been tested for their ice scraping efficiency. Two of the blades are standard (one with a carbide insert, the other without) while the third blade was designed under the SHRP H-204A project. Results from the tests allowed two parameters to be identified. The first is the scraping efficiency which is the ratio of vertical to horizontal force. The lower this ratio, the more efficiently ice is being removed. The second parameter is the scraping effectiveness, which is related (in some as yet unspecified manner) to the horizontal load. The higher the horizontal load, the more ice is being scraped. The ideal case is thus to have as high a horizontal load as possible, combined with the lowest possible vertical load. Results indicate that the SHRP blade removed ice more effectively than the other two blades under equivalent conditions, and furthermore, did so with greater efficiency and thus more control. Furthermore, blade angles close to 0 deg provide for the most efficient scraping for all three blades. The study has shown that field testing of plow blades is possible in controlled situations, and that blades can be evaluated using this system. The system is available for further tests as are deemed appropriate.
Resumo:
Research was conducted to investigate the potential of strengthening continuous bridges by post-tensioning. The study included the following: a literature review, selection and rating of a prototype continuous composite bridge, tests of a one-third-scale continuous composite bridge model, finite element analysis of the bridge model, and tests of a full-scale composite beam mockup for a negative moment region. The study results indicated that the strengthening of continuous, composite bridges is feasible. The primary objective in applyig the post-tensioning should be to provide moments opposite to those produced by live and dead loads. Longitudinal distribution of that post-tensioning always must be considered if only exterior or only interior beams are post-tensioned. Testing and finite element analysis showed that post-tensioning of positive moment regions with straight tendons was more effective than post-tensioning negative moment regions with straight tendons. Changes in tension in tendons may be either beneficial or detrimental when live loads are applied to a strengthened bridge and thus must be carefully considered in design.
Resumo:
Some of the Iowa Department of Transportation (Iowa DOT) continuous, steel, welded plate girder bridges have developed web cracking in the negative moment regions at the diaphragm connection plates. The cracks are due to out-of-plane bending of the web near the top flange of the girder. The out-of-plane bending occurs in the "web-gap", which is the portion of the girder web between (1) the top of the fillet welds attaching the diaphragm connection plate to the web and (2) the fillet welds attaching the flange to the web. A literature search indicated that four retrofit techniques have been suggested by other researchers to prevent or control this type of cracking. To eliminate the problem in new bridges, AASHTO specifications require a positive attachment between the connection plate and the top (tension) flange. Applying this requirement to existing bridges is expensive and difficult. The Iowa DOT has relied primarily on the hole-drilling technique to prevent crack extension once cracking has occurred; however, the literature indicates that hole-drilling alone may not be entirely effective in preventing crack extension. The objective of this research was to investigate experimentally a method proposed by the Iowa DOT to prevent cracking at the diaphragm/plate girder connection in steel bridges with X-type or K-type diaphragms. The method consists of loosening the bolts at some connections between the diaphragm diagonals and the connection plates. The investigation included selecting and testing five bridges: three with X-type diaphragms and two with K-type diaphragms. During 1996 and 1997, these bridges were instrumented using strain gages and displacement transducers to obtain the response at various locations before and after implementing the method. Bridges were subjected to loaded test trucks traveling in different lanes with speeds varying from crawl speed to 65 mph (104 km/h) to determine the effectiveness of the proposed method. The results of the study show that the effect of out-of-plane loading was confined to widths of approximately 4 in. (100 mm) on either side of the connection plates. Further, they demonstrate that the stresses in gaps with drilled holes were higher than those in gaps without cracks, implying that the drilling hole technique is not sufficient to prevent crack extension. The behavior of the web gaps in X-type diaphragm bridges was greatly enhanced by the proposed method as the stress range and out-of-plane distortion were reduced by at least 42% at the exterior girders. For bridges with K-type diaphragms, a similar trend was obtained. However, the stress range increased in one of the web gaps after implementing the proposed method. Other design aspects (wind, stability of compression flange, and lateral distribution of loads) must be considered when deciding whether to adopt the proposed method. Considering the results of this investigation, the proposed method can be implemented for X-type diaphragm bridges. Further research is recommended for K-type diaphragm bridges.
Resumo:
Bridge deck cracking occasionally occurs during construction for any number of reasons. Improper design, concrete placement or deck curing can result in cracks. One contributing factor toward cracking may be dead load deflections induced during concrete placement. For both continuous and non-continuous bridges, specific placement sequences are required to minimize harmful deflections in previously placed sections. Set retarding admixtures are also used to keep previously placed concrete plastic until the pour is completed. The problem is--at what point does movement of the concrete cause permanent damage to the deck. The study evaluated the time to crack formation relationship for mixes with low and high dosages of set retarding admixtures currently approved for use in Iowa state and county projects.
Resumo:
The main objective of the proposed study is to use Computational Fluid Dynamics (CFD) tools to determine the wind loads by accurate numerical simulations of air flow characteristics around large highway sign structures under severe wind speeds conditions. Fully three-dimensional Reynolds- Averaged Navier-Stokes (RANS) simulations are used to estimate the total force on different panels, as well as the actual pressure distribution on the front and back faces of the panels. In particular, the present study investigates the effects of aspect ratio and sign spacing for regular panels, the effect of sign depth for the dynamic message signs that are now being used on Iowa highways, the effect induced by the presence of back-to-back signs, the effect of the presence of add-on exit signs, and the effect of the presence of trucks underneath the signs potentially creating “wind tunnel” effect.
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.
Resumo:
The purpose of the research was to develop a more realistic design criteria for distribution of wheel loads on highway bridges. A comprehensive study was made of the· static load distribution in a broad range of short and medium span bridge types used by today's designers.