2 resultados para Tailoring
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Fast Track concrete has proven to be successful in obtaining high early strengths. This benefit does not come without cost. Special Type III cement and insulating blankets to accelerate the cure add to its expense when compared to conventional paving. This research was intended to determine the benefit derived from the use of insulating blankets to accelerate strength gain in three concrete mixes using Type I cement. The goal was to determine mixes and curing procedures that would result in a range of opening times. This determination would allow the most economical design for a particular project by tailoring it to a specific time restraint. Three mixes of various cement content were tested in the field. Flexural beams were cast for each mix and tested at various ages. Two test sections were placed for each mix, one section being cured with the addition of insulating blankets and the other being cured with only conventional curing compound. Iowa Department of Transportation specifications require 500 psi flexural strength before a pavement can be opened to traffic. Concrete with Fast Track proportions (nominal 7 1/2 bag), Type I cement, and insulating blankets reached that strength in approximately 36 hr, a standard mix (nominal 6 1/2 bag) using the blankets in approximately 48 hr, and the Fast Track proportions with Type I cement without blankets in about 60 hr. The results showed a significant improvement in early strength gain with the use of insulating blankets.
Resumo:
In 1994 the Iowa Department of Transportation constructed a 7.2-mile Portland Cement Concrete overlay project in Iowa County on Iowa Highway 21. The research work was conducted in cooperation with the Department of Civil Engineering and the Federal Highway Administration under the Iowa Highway Research Board project HR-559. The project was constructed to evaluate the performance of an ultrathin concrete overlay during a 5-year period. The experiment included variables of base surface preparation, overlay depth, joint spacing, fiber reinforcement, and the sealed or non-sealed joints. The project was instrumented to measure overlay/base interface temperatures and strains. Visual distress surveys and deflection testing were also used to monitor performance. Coring and direct shear testing was accomplished 3 times during the research period. Results of the testing and monitoring are identified in the report. The experiment was very successful and the results provide an insight into construction and design needs to be considered in tailoring a portland cement concrete overlay to a performance need. The results also indicate a method to monitor bond with nondestructive methods.