26 resultados para Surface electromyographic measure
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Pavement profile or smoothness has been identified nationally as a good measure of highway user satisfaction. This has led highway engineers to measure profiles of both operating and new highways. Operational highway profiles are often measured with high-speed inertial profilers. New highway profiles are usually measured with profilographs in order to establish incentives or disincentives for pavement construction. In most cases, these two processes do not measure the same value from the “cradle to grave” life of pavements. In an attempt to correct the inconsistency between measuring techniques, lightweight profilers intended to produce values to be used for construction acceptance are being made that measure the same profile as high-speed inertial profilers. Currently, two profiler systems have been identified that can measure pavement profile during construction. This research has produced a field evaluation of the two systems. The profilers evaluated in this study are able to detect roughness in the final profile, including localized roughness and roughness at joints. Dowel basket ripple is a significant source of pavement surface roughness. The profilers evaluated in this study are able to detect dowel basket ripple with enough clarity to warn the paving crew. String-line disturbances degrade smoothness. The profilers evaluated in this study are able to detect some string-line disturbances during paving operations. The profilers evaluated in this study are not currently able to produce the same absolute International Roughness Index (IRI) values on the plastic concrete that can be measured by inertial profilers on the hardened concrete. Construction application guidelines are provided.
Resumo:
One of the most important issues in portland cement concrete pavement research today is surface characteristics. The issue is one of balancing surface texture construction with the need for durability, skid resistance, and noise reduction. The National Concrete Pavement Technology Center at Iowa State University, in conjunction with the Federal Highway Administration, American Concrete Pavement Association, International Grinding and Grooving Association, Iowa Highway Research Board, and other states, have entered into a three-part National Surface Characteristics Program to resolve the balancing problem. As a portion of Part 2, this report documents the construction of 18 separate pavement surfaces for use in the first level of testing for the national project. It identifies the testing to be done and the limitations observed in the construction process. The results of the actual tests will be included in the subsequent national study reports.
Resumo:
Surface characteristics represent a critical issue facing pavement owners and the concrete paving industry. The traveling public has come to expect smoother, quieter, and better drained pavements, all without compromising safety. The overall surface characteristics issues is extremely complex since all pavement surface characteristics properties, including texture, noise, friction, splash/spray, rolling resistance, reflectivity/illuminance, and smoothness, are complexly related. The following needs and gaps related to achieving desired pavement surface characteristics need to be addressed: determined how changes in one surface characteristic affect, either beneficially or detrimentally, other characteristics of the pavement, determine the long-term surface and acoustic durability of different textures, and develop, evaluate, and standardize new data collection and analysis tools. It is clear that an overall strategic and coordinated research approach to the problem must be developed and pursued to address these needs and gaps.
Resumo:
Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.
Resumo:
A vehicle may leave its travel lane for a number of reasons, such as driver error, poor surface conditions, or avoidance of a collision with another vehicle in the travel lane. When a vehicle leaves the travel lane, pavement edge drop-off poses a potential safety hazard because significant vertical differences between surfaces can affect vehicle stability and reduce a driver’s ability to handle the vehicle. Numerous controlled studies have tested driver response to encountering drop-offs under various conditions, including different speeds, vehicle types, drop-off height and shape, and tire scrubbing versus non-scrubbing conditions. The studies evaluated the drivers’ ability to return to and recover within their own travel lane after leaving the roadway and encountering a drop-off. Many of these studies, however, have used professional drivers as test subjects, so results may not always apply to the population of average drivers. Furthermore, test subjects are always briefed on what generally is to be expected and how to respond; thus, the sense of surprise that a truly naïve driver may experience upon realizing that one or two of his or her tires have just dropped off the edge of the pavement, is very likely diminished. Additionally, the studies were carried out under controlled conditions. The actual impact of pavement edge drop-off on drivers’ ability to recover safely once they leave the roadway, however, is not well understood under actual driving conditions. Additionally, little information is available that quantifies the number or severity of crashes that occur where pavement edge drop-off may have been a contributing factor. Without sufficient information about the frequency of edge drop-off-related crashes, agencies are not fully able to measure the economic benefits of investment decisions, evaluate the effectiveness of different treatments to mitigate edge drop-off, or focus maintenance resources. To address these issues, this report details research to quantify the contribution of pavement edge drop-off to crash frequency and severity. Additionally, the study evaluated federal and state guidance in sampling and addressing pavement edge drop-off and quantified the extent of pavement edge drop-off in two states. This study focused on rural two-lane paved roadways with unpaved shoulders, since they are often high speed facilities (55+ mph), have varying levels of maintenance, and are likely to be characterized by adverse roadway conditions such as narrow lanes or no shoulders.
Resumo:
Public roads by surface type in Iowa by Iowa Department of Transportation.
Resumo:
The measurement of pavement roughness has been the concern of highway engineers for more than 70 years. This roughness is referred to as "riding quality" by the traveling public. Pavement roughness evaluating devices have attempted to place either a graphical or numerical value on the public's riding comfort or discomfort. Early graphical roughness recorders had many different designs. In 1900 an instrument called the "Viagraph" was developed by an Irish engineer.' The "Viagraph" consisted of a twelve foot board with graphical recorder drawn over the pavement. The "Profilometer" built in Illinois in 1922 was much more impressive. ' The instrument's recorder was mounted on a frame supported by 32 bicycle wheels mounted in tandem. Many other variations of profilometers with recorders were built but most were difficult to handle and could not secure uniformly reproducible results. The Bureau of Public Roads (BPR) Road Roughness Indicator b u i l t in 1941 is the most widely used numerical roughness recorder.' The BPR Road Roughness Indicator consists of a trailer unit with carefully selected springs, means of dampening, and balanced wheel.
Crash Rates and Crash Densities on Secondary Roads in Iowa by Surface Type 2001 – 2009, July 6, 2010
Resumo:
Crash Rates and Crash Densities on Secondary Roads in Iowa by Surface Type produced by the Iowa Department of Transportation.
Resumo:
The quality and availability of aggregate for pc concrete stone varies across Iowa. Southwest Iowa is one area of the state that is short of quality aggregates. The concrete stone generally available in the area is limestone from the Argentine or Winterset ledges with an overburden of up to 150 feet. This concrete stone is classified as Class 1 durability and is susceptible to 'ID"-cracking. In addition, the general engineering soil classification rates the soils of southwest Iowa as having the poorest subgrade bearing characteristics in the state. 1 The combination of poor soils and low quality aggregate has contributed to premature deterioration of many miles of portland cement concrete pavement. Research project HR-209 was initiated in 1979 to explore alternative construction methods that may produce better pavements for southwest Iowa.
Resumo:
Safety i s a very important aspect o f the highway program. The Iowa DOT initiated an inventory o f the friction values of all paved primary roadways i n 1969. This inventory, with an ASTM E-274 test unit, has continued to the present time. The t e s t i n g frequency varies based upon traffic volume and the previous friction value. Historically , the state o f Iowa constructed a substantial amount o f pcc pavement during the 1928-30 period t o "get Iowa out o f the mud". Some of that pavement has never been resurfaced and has been subjected to more than 50 years o f wear. The textured surface has been worn away and has subsequently polished. Even though some pavements from 15 t o 50 years old continue t o function structurally , because of the loss of friction , they do not provide the desired level o f safety to the driver. As a temporary measure, "Sl ippery -When -Wet " signs have been posted on many older pcc roads due to friction numbers below t h e desirable level. These signs warn the motorist of the current conditions. An economical method of restoring the high quality frictional properties i s needed.
Resumo:
An experimental modification of the transverse groove surface texture of a section of an urban interstate highway was performed by the Iowa Department of Transportation. Transverse groove texturing i s a design feature required by the Federal Highway Administration t o reduce skidding under wet pavement conditions. Adjacent residents claimed the texturing was the cause of especially annoying tonal characteristics within the traffic noise. A research proposal to modify the existing texture pattern by surface grinding and to study the noise and friction effects was approved for funding by the Iowa Highway Research Board. Results i n the form of a comparison between traffic noise before modification and traffic noise immediately after and 15 months after modification indicate that the change in surface texture has lowered overall traffic noise levels by reducing a high frequency component of the traffic noise spectrum. Fraffic testing data show reduced capacity of the roadway to inhibit wet pavement skidding as a result of the surface modification.
Resumo:
Recognize facilities that provide quality of life and appropriate access to medical assistance program beneficiaries in a cost-effective manner. Each measure is intended to represent nursing facility characteristics in each of the four domains.
Resumo:
Weathering steel is commonly used as a cost-effective alternative for bridge superstructures, as the costs and environmental impacts associated with the maintenance/replacement of paint coatings are theoretically eliminated. The performance of weathering steel depends on the proper formation of a surface patina, which consists of a dense layer of corrosion product used to protect the steel from further atmospheric corrosion. The development of the weathering steel patina may be hindered by environmental factors such as humid environments, wetting/drying cycles, sheltering, exposure to de-icing chlorides, and design details that permit water to pond on steel surfaces. Weathering steel bridges constructed over or adjacent to other roadways could be subjected to sufficient salt spray that would impede the development of an adequate patina. Addressing areas of corrosion on a weathering steel bridge superstructure where a protective patina has not formed is often costly and negates the anticipated cost savings for this type of steel superstructure. Early detection of weathering steel corrosion is important to extending the service life of the bridge structure; however, written inspection procedures are not available for inspectors to evaluate the performance or quality of the patina. This project focused on the evaluation of weathering steel bridge structures, including possible methods to assess the quality of the weathering steel patina and to properly maintain the quality of the patina. The objectives of this project are summarized as follows: Identify weathering steel bridge structures that would be most vulnerable to chloride contamination, based on location, exposure, environment, and other factors. Identify locations on an individual weathering steel bridge structure that would be most susceptible to chloride contamination, such as below joints, splash/spray zones, and areas of ponding water or debris. Identify possible testing methods and/or inspection techniques for inspectors to evaluate the quality of the weathering steel patina at locations discussed above. Identify possible methods to measure and evaluate the level of chloride contamination at the locations discussed above. Evaluate the effectiveness of water washing on removing chlorides from the weathering steel patina. Develop a general prioritization for the washing of bridge structures based on the structure’s location, environment, inspection observations, patina evaluation findings, and chloride test results.
Resumo:
Iowa’s first annual Energy Independence Plan kicks off a new era of state leadership in energy transformation. Supported by Governor Chet Culver, Lieutenant Governor Patty Judge, and the General Assembly, the Office of Energy Independence was established in 2007 to coordinate state activities for energy independence. The commitment of the state to lead by example creates opportunities for state government to move boldly to achieve its goals, track its progress, measure the results, and report the findings. In moving to energy independence, the active engagement of every Iowan will be sought as the state works in partnership with others in achieving the goals. While leading ongoing efforts within the state, Iowa can also show the nation how to effectively address the critical, complex challenges of shifting to a secure energy future of affordable energy, cost-effective efficiency, reliance on sustainable energy, and enhanced natural resources and environment. In accordance with House File 918, “the plan shall provide cost effective options and strategies for reducing the state’s consumption of energy, dependence on foreign sources of energy, use of fossil fuels, and greenhouse gas emissions. The options and strategies developed in the plan shall provide for achieving energy independence from foreign sources of energy by the year 2025.” Energy independence is a term which means different things to different people. We use the term to mean that we are charting our own course in the emerging energy economy. Iowa can chart its own course by taking advantage of its resources: a well-educated population and an abundance of natural resources, including rich soil, abundant surface and underground water, and consistent wind patterns. Charting our own course also includes further developing our in-state industry, capturing renewable energy, and working toward improved energy efficiency. Charting our own course will allow Iowa to manage its economic destiny while protecting our environment, while creating new, “green collar” industries in every corner of Iowa. Today Iowa is in a remarkable position to capitalize on the current situation globally and at home. Energy drives the economy and has impacts on the environment, undeniable links that are integral for energy security and independence. With the resources available within the state, the combination of significant global changes in energy and research leading to new technologies that continue to drive down the costs of sustainable energy, Iowa can take bold strides toward the goal of energy independence by 2025. The Office of Energy Independence, with able assistance from hundreds of individuals, organizations, agencies, and advisors, presents its plan for Iowa’s Energy Independence.
Resumo:
Freezing and thawing action induces damage to unbound gravel roads in Iowa resulting in maintenance costs for secondary road departments. Some approaches currently used by County Engineers to deal with this problem include temporarily spreading rock on the affected areas, lowering or improving drainage ditches, tiling, bridging the area with stone and geosynthetic covered by a top course of aggregate or gravel, coring boreholes and filling them with calcium chloride to melt lenses and provide drainage, and re-grading the crown to a slope of 4% to 6% to maximize spring drainage. However, most of these maintenance solutions are aimed at dealing with conditions after they occur. This study was tasked with identifying alternative approaches in the literature to mitigate the problem. An annotated bibliographic record of literature on the topic of frost-heave and thaw-weakening of gravel roads was generated and organized by topic, and all documents were assessed in terms of a suitable rating for mitigating the problem in Iowa. Over 300 technical articles were collected and selected down to about 150 relevant articles for a full assessment. The documents collected have been organized in an electronic database, which can be used as a tool by practitioners to search for information regarding the various repair and mitigation solutions, measurement technologies, and experiences that have been documented by selected domestic and international researchers and practitioners. Out of the 150+ articles, 71 articles were ranked as highly applicable to conditions in Iowa. The primary mitigation methods identified in this study included chemical and mechanical stabilization; scarification, blending, and recompaction; removal and replacement; separation, and reinforcement; geogrids and cellular confinement; drainage control and capillary barriers, and use of alternative materials. It is recommended that demonstration research projects be established to examine a range of construction methods and materials for treating granular surfaced roadways to mitigate frost-heave and thaw-weakening problems. Preliminary frost-susceptibility test results from ASTM D5916 are included for a range of Iowa materials.