32 resultados para Stone carving
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
An act to provide the State of Iowa with a new state capitol building was enacted on April 14, 1870 and then on Thursday, the 23d day of November, 1871, the corner stone of the new capitol building, at the city of Des Moines, was laid with appropriate ceremonies
Resumo:
In today's era of advanced methods, it is interesting that a centuries-old Roman road-building concept can be the most attractive alternative available. The need for a less expensive road base construction method is very apparent, especially to the county engineer faced with maintaining quality lower traffic volume farm-to-market roads. The revival of the Macadam stone base is one possible solution. Des Moines County believed a Macadam road had excellent possibilities for their particular needs. They proposed a research project designed to eliminate some of the unknown factors of Macadam stone base construction. It is the intent of this research project to develop standardized design procedures and serve as an aid for others in constructing a Macadam base roadway. The Iowa Department of Transportation has published special provisions for the construction of Macadam stone bases that were adopted as the guideline specifications for the research project.
Resumo:
Reinforced Earth is a French development that has been used in the United States for approximately ten years. Virbro-Replacement, more commonly referred to as stone columns, is an outgrowth of deep densification of cohesionless soils originally developed in Germany. Reinforced Earth has applicability when wall height is greater than about twelve feet and deep seated foundation failure is not a concern. Stone columns are applicable when soft, cohesive subsoil conditions are encountered and bearing capacity and shearing resistance must be increased. The conditions in Sioux City on Wesley Way can be summarized as: (1) restricted right of way, (2) fill height in excess of 25 feet creating unstable conditions, (3) adjacent structures that could not be removed. After analyzing alternatives, it was decided that Reinforced Earth walls constructed on top of stone columns were the most practical approach.
Resumo:
This project included the following tasks: (1) Preparation of a questionnaire and survey of all 99 Iowa county engineers for input on current surfacing material practice; (2) County survey data analysis and selection of surfacing materials gradations to be used for test road construction; (3) Solicitation of county engineers and stone producers for project participation; (4) Field inspection and selection of the test road; (5) Construction of test road using varying material gradations from a single source; and (6) Field and laboratory testing and test road monitoring. The results of this research project indicate that crushed stone surfacing material graded on the fine side of Iowa Department of Transportation Class A surfacing specifications provides lower roughness and better rideability; better braking and handling characteristics; and less dust generation than the coarser gradations. It is believed that this material has sufficient fines available to act as a binder for the coarser material, which in turn promotes the formation of tight surface crust. This crust acts to provide a smooth riding surface, reduces dust generation, and improves vehicle braking and handling characteristics.
Resumo:
Standards for the construction of full-depth patching in portland cement concrete pavement usually require replacement of all deteriorated based materials with crushed stone, up to the bottom of the existing pavement layer. In an effort to reduce the time of patch construction and costs, the Iowa Department of Transportation and the Department of Civil, Construction and Environmental Engineering at Iowa State University studied the use of extra concrete depth as an option for base construction. This report compares the impact of additional concrete patching material depth on rate of strength gain, potential for early opening to traffic, patching costs, and long-term patch performance. This report also compares those characteristics in terms of early setting and standard concrete mixes. The results have the potential to change the method of Portland cement concrete pavement patch construction in Iowa.
Resumo:
Today, after you descend into the valley of the Iowa River north of Marengo, the route turns east on county road F15 and approaches the historic Amana Society. Settled in the late 1850s by German immigrants of the Community of True Inspiration, the new arrivals utilized the local timber and stone resources to construct their buildings. During these early years several stone quarries were opened in the hills along the north wall of the Iowa River valley near East, Middle, and West Amana. Riders will pass close to one of these old quarries 0.7 miles west of West Amana. The stone taken from these quarries is beautiful quartz-rich sandstone that is cemented by light brown to orange tinged iron oxide. This stone was used in the construction of many buildings in Amana.
Resumo:
With the implementation of the 2000 Q-MC specification, an incentive is provided to produce an optimized gradation to improve placement characteristics. Also, specifications for slip-formed barrier rail have changed to require an optimized gradation. Generally, these optimized gradations have been achieved by blending an intermediate aggregate with the coarse and fine aggregate. The demand for this intermediate aggregate has been satisfied by using crushed limestone chips developed from the crushing of the parent concrete stone. The availability, cost, and physical limitations of crushed limestone chips can be a concern. A viable option in addressing these concerns is the use of gravel as the intermediate aggregate. Unfortunately, gravels of Class 3I durability are limited to a small geographic area in Mississippi river sands north of the Rock River. Class 3 or Class 2 durability gravels are more widely available across the state. The durability classification of gravels is based on the amount and quality of the carbonate fraction of the material. At present, no service histories or research exists to assess the impact of using Class 3 or 2 durability gravels would have on the long-term durability of Portland cement concrete (PCC) pavement requiring Class 3I aggregate.
Resumo:
Highway safety and pavement performance can be directly influenced by the type of shoulders that are constructed. Shoulder design alternatives have always been rather limited. Moreover, the use of some of the alternatives has always been restricted by funding limitations. This research project seeks to explore the use of modified macadam base construction for shoulders. This type of shoulder design could offer the designer another option when paved or stabilized shoulders are being considered. Macadam base construction has in the past been shown to be quite strong and free draining. Two macadam base shoulder designs were developed and constructed for this research project. A new roadway embankment and P.C.C. pavement were constructed on a section of US 6 east of Adel in Dallas County. The macadam base shoulders were constructed adjacent to the pavement as part of the project. The north shoulder was finished with a choke stone course and bituminous surface treatment and the south shoulder was finished with a two (2) inch layer of Type B Class I1 asphalt concrete. Macadam stone base shoulders can be built with relatively minor construction problems with comparable strength and less cost than asphalt treated base shoulders. The macadam stone base shoulders have performed well with very little maintenance necessary. The improved drainage substantially reduces deterioration of the pavement joints.
Resumo:
The quality and availability of aggregate for pc concrete stone varies across Iowa. Southwest Iowa is one area of the state that is short of quality aggregates. The concrete stone generally available in the area is limestone from the Argentine or Winterset ledges with an overburden of up to 150 feet. This concrete stone is classified as Class 1 durability and is susceptible to 'ID"-cracking. In addition, the general engineering soil classification rates the soils of southwest Iowa as having the poorest subgrade bearing characteristics in the state. 1 The combination of poor soils and low quality aggregate has contributed to premature deterioration of many miles of portland cement concrete pavement. Research project HR-209 was initiated in 1979 to explore alternative construction methods that may produce better pavements for southwest Iowa.
Resumo:
This investigation was initiated to determine the causes of a rutting problem that occurred on Interstate 80 in Adair County. 1-80 from Iowa 25 to the Dallas County line was opened to traffic in November, 1960. The original pavement consisted of 4-1/2" of asphalt cement concrete over 12" of rolled stone base and 12" of granular subbase. A 5-1/2" overlay of asphalt cement concrete was placed in 1964. In 1970-1972, the roadway was resurfaced with 3" of asphalt cement concrete. In 1982, an asphalt cement concrete inlay, designed for a 10-year life, was placed in the eastbound lane. The mix designs for all courses met or exceeded all current criteria being used to formulate job mixes. Field construction reports indicate .that asphalt usage, densities, field voids and filler bitumen determinations were well within specification limits on a very consistent basis. Field laboratory reports indicate that laboratory voids for the base courses were within the prescribed limits for the base course and below the prescribed limits for the surface course. Instructional memorandums do indicate that extreme caution should be exercised when the voids are at or near the lower limits and traffic is not minimal. There is also a provision that provides for field voids controlling when there is a conflict between laboratory voids and field voids. It appears that contract documents do not adequately address the directions that must be taken when this conflict arises since it can readily be shown that laboratory voids must be in the very low or dangerous range if field voids are to be kept below the maximum limit under the current density specifications. A rut depth survey of January, 1983, identified little or no rutting on this section of roadway. Cross sections obtained in October, 1983, identified rutting which ranged from 0 to 0.9" with a general trend of the rutting to increase from a value of approximately 0.3" at MP 88 to a rut depth of 0.7" at MP 98. No areas of significant rutting were identified in the inside lane. Structural evaluation with the Road Rater indicated adequate structural capacity and also indicated that the longitudinal subdrains were functioning properly to provide adequate soil support values. Two pavement sections taken from the driving lane indicated very little distortion in the lower 7" base course. Essentially all of the distortion had occurred in the upper 2" base course and the 1..;1/2" surface course. Analysis of cores taken from this section of Interstate 80 indicated very little densification of either the surface or the upper or lower base courses. The asphalt cement content of both the Type B base courses and the Type A surface course were substantially higher than the intended asphalt cement content. The only explanation for this is that the salvaged material contained a greater percent of asphalt cement than initial extractions indicated. The penetration and viscosity of the blend of new asphalt cement and the asphalt cement recovered from the salvaged material were relatively close to that intended for this project. The 1983 ambient temperatures were extremely high from June 20 through September 10. The rutting is a result of a combination of adverse factors including, (1) high asphalt content, (2) the difference between laboratory and field voids, (3) lack of intermediate sized crushed particles, (4) high ambient temperatures. The high asphalt content in the 2" upper base course produced an asphalt concrete mix that did not exhibit satisfactory resistance to deformation from heavy loading. The majority of the rutting resulted from distortion of the 2" upper base lift. Heater planing is recommended as an interim corrective action. Further recommendation is to design for a 20-year alternative by removing 2-1/2" of material from the driving lane by milling and replacing with 2-1/2" of asphalt concrete with improved stability. This would be .followed by placing 1-1/2" of high quality resurfacing on the entire roadway. Other recommendations include improved density and stability requirements for asphalt concrete on high traffic roadways.
Resumo:
Browse through this guide and you’ll find the distinct flavor of what is available along each byway. Discover recreational, historic, cultural and scenic attractions using the maps and lists provided in the guide. You’ll find numbered attractions for each byway in or near the town listed. For a comprehensive list of byway features, visit www.iowabyways.org. Friendly local contacts are provided to help you along the way. Iowa Transportation Maps clearly tracking all the Iowa byways with red dotted lines are available at Iowa’s official welcome centers. Traveling Iowa’s byways you will experience small town America, while enjoying diverse landscapes and unique landforms that have been shaped over thousands of years. Iowa’s cultural heritage also plays a major role across all 11 byways, boasting hundreds of historic sites, national landmarks and interpretive centers, each telling Iowa’s stories from the first Native Americans through European immigrants to modern times. Glaciers once covered much of Iowa, shaping the broad flat plains of the prairie. These massive sheets of ice missed the northeast corner of the state, leaving the land along the Driftless Area Byway rugged and hilly with rock outcroppings, springs and cold water trout streams. Rivers coursed their way through the land, carving deep furrows in some places and leaving gently rolling hills in others. In western Iowa, wind has shaped fine sand into the impressive Loess Hills, a rare land form found in only one other place on earth. Iowa’s two national scenic byways and nine state byways offer unique varieties of scenic features, and more for you to see and do. View three states from atop a Mississippi River bluff, stop at a modern art museum and then tour a working farm. Explore a historic mill, visit a national aquarium, take a boat ride in a cave, purchase locally crafted pottery and wares from local artisans or trace the footsteps of Lewis and Clark. Experience the actual wagon ruts of the Mormon Trail, ride your bike 13 stories high, canoe a water trail, star gaze under Iowa’s darkest sky, and marvel at mounds built by prehistoric cultures. Agriculture wraps Iowa’s byways with an abundance of farmland vistas and fills Iowa lands with ever-changing crops and activities for you to “harvest.” You’ll see croplands on the vast flat plains and farmsteads sprinkled across rolling hills reminiscent of a Grant Wood painting. Along the way, you might wander in a corn maze, rest at a bed and breakfast, study farming in museums, discover the Iowa barn quilt collection or visit a working Amish farm. When you are ready to step outside your vehicle, you’ll find much more to do and see. Prairie, forests, rivers and public lands are abundant along Iowa’s byways; providing opportunities for you to stop and play in the outdoors with hiking, biking, kayaking and trout fishing. Classic hometowns with pride for their unique lore and offerings are found all along the byways. They invite you to taste local food, enjoy their architecture, and immerse yourself in the rich history and culture that defines them. Why not plan your next journey off the beaten path? No matter how you choose to make the most of every moment, we know that time spent along Iowa’s byways is sure to grow your love for Iowa’s diverse, beautiful vistas and authentic communities. Happy driving!
Resumo:
Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained. January 18, 2012 THIS WEEK: Report by Annie Wittenmyer, State Sanitary Agent BACKGROUND: The 10th General Assembly convened on January 11, 1864, and adjourned on March 29—a 79-day session. There were 138 members in the legislature. The members included 42 Republicans in the Senate and 87 Republicans in the House of Representatives. Democrats numbered four in the Senate and five in the House. Jacob Butler was the Speaker of the House, and Enoch W. Eastman was the Lt. Governor presiding in the Senate. William Stone was Iowa’s governor. Stone was inaugurated on January 14, 1864. He was 36 years old. Governor Stone, a friend of President Abraham Lincoln, rode Lincoln’s funeral train to Springfield, Illinois
Resumo:
Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained. January 25, 2012 THIS WEEK: HOUSE RESOLUTIONS PRESENTED ON JANUARY 8, 1866 BACKGROUND: Background: The 11th General Assembly convened January 8, 1866, and adjourned April 3, 1866—an 86-day session. There were 146 members in the legislature, 48 senators and 98 representatives. Iowa’s Governor was William Milo Stone, and the 1860 census showed Iowa’s population at 482,699. Robert Finkbine represented House district 26. It was Finkbine’ s second term. He was 37 and listed his occupation as “builder.” Robert Finkbine went on to become the Superintendent of Construction for the present day Capitol. House district 26 represented Johnson County in 1866. In 1878, Marion County became the constituency for House district 26. The representative in House district 26 in 1878 was William Milo Stone, previous governor and resident of Knoxville
Resumo:
Pieces of Iowa’s Past, published by the Iowa State Capitol Tour Guides weekly during the legislative session, features historical facts about Iowa, the Capitol, and the early workings of state government. All historical publications are reproduced here with the actual spelling, punctuation, and grammar retained THIS WEEK: Iowa State Capitol Structural Sandstone Origination From The Iowa Capitol Commissioners Reports Report of Capitol Architect A.H. Piquenard, submitted December 16, 1875 BACKGROUND: The Ste. Genevieve sandstone is the buff color stone on the exterior of the Capitol. The Carroll County sandstone was the light color or contrast stone on the Capitol exterior. The Carroll County stone did not wear well and was removed from the building during the exterior renovations in the 1980s and 1990s. Both sandstones are from Missouri.
Resumo:
Freezing and thawing action induces damage to unbound gravel roads in Iowa resulting in maintenance costs for secondary road departments. Some approaches currently used by County Engineers to deal with this problem include temporarily spreading rock on the affected areas, lowering or improving drainage ditches, tiling, bridging the area with stone and geosynthetic covered by a top course of aggregate or gravel, coring boreholes and filling them with calcium chloride to melt lenses and provide drainage, and re-grading the crown to a slope of 4% to 6% to maximize spring drainage. However, most of these maintenance solutions are aimed at dealing with conditions after they occur. This study was tasked with identifying alternative approaches in the literature to mitigate the problem. An annotated bibliographic record of literature on the topic of frost-heave and thaw-weakening of gravel roads was generated and organized by topic, and all documents were assessed in terms of a suitable rating for mitigating the problem in Iowa. Over 300 technical articles were collected and selected down to about 150 relevant articles for a full assessment. The documents collected have been organized in an electronic database, which can be used as a tool by practitioners to search for information regarding the various repair and mitigation solutions, measurement technologies, and experiences that have been documented by selected domestic and international researchers and practitioners. Out of the 150+ articles, 71 articles were ranked as highly applicable to conditions in Iowa. The primary mitigation methods identified in this study included chemical and mechanical stabilization; scarification, blending, and recompaction; removal and replacement; separation, and reinforcement; geogrids and cellular confinement; drainage control and capillary barriers, and use of alternative materials. It is recommended that demonstration research projects be established to examine a range of construction methods and materials for treating granular surfaced roadways to mitigate frost-heave and thaw-weakening problems. Preliminary frost-susceptibility test results from ASTM D5916 are included for a range of Iowa materials.