4 resultados para Split and merge

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improving work-zone flow-through merge points depends on the behavior of individual drivers. By better understanding driver behavior, traffic control plans, work zone policies, and countermeasures can be better targeted to reinforce desirable lane closure merging behavior, leading to both improved safety and work-zone capacity. The researchers collected data for two work-zone scenarios that included lane drops with one scenario on the Interstate and the other on an urban arterial roadway. The researchers then modeled and calibrated these scenarios in VISSIM using real-world speeds, travel times, queue lengths, and merging behaviors (percentage of vehicles merging upstream and near the merge point). Once built and calibrated, the researchers modeled strategies for various countermeasures in the two work zones. The models were then used to test and evaluate how various merging strategies affect safety and operations at the merge areas in these two work zones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report presents the results of a comparative laboratory study between well- and gap-graded aggregates used in asphalt concrete paving mixtures. A total of 424 batches of asphalt concrete mixtures and 3, 960 Marshall and Hveem specimens were examined. The main thrust of the statistical analysis conducted in this experiment was in the calibration study and in Part I of the experiment. In the former study, the compaction procedure between the Iowa State University Lab and the Iowa Highway Commission Lab was calibrated. By an analysis of the errors associated with the measurements we were able to separate the "preparation" and "determination" errors for both laboratories as well as develop the calibration curve which describes the relationship between the compaction procedures at the two labs. In Part I, the use of a fractional factorial design in a split plot experiment in measuring the effect of several factors on asphalt concrete strength and weight was exhibited. Also, the use of half normal plotting techniques for indicating significant factors and interactions and for estimating errors in experiments with only a limited number of observations was outlined,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Efforts to improve safety and traffic flow through merge areas on high volume/high speed roadways have included early merge and late merge concepts and several studies of the effectiveness of these concepts, many using Intelligent Transportation Systems for implementation. The Iowa Department of Transportation (Iowa DOT) planned to employ a system of dynamic message signs (DMS) to enhance standard temporary traffic control for lane closures and traffic merges at two bridge construction projects in western Iowa (Adair County and Cass County counties) on I-80 during the 2008 construction season. To evaluate the DMS system’s effectiveness for impacting driver merging actions, the Iowa DOT contracted with Iowa State University’s Center for Transportation Research and Education to perform the evaluation and make recommendations for future use of this system based on the results. Data were collected over four weekends, beginning August 1–4 and ending October 16–20, 2008. Two weekends yielded sufficient data for evaluation, one of transition traffic flow and the other with a period of congestion. For both of these periods, a statistical review of collected data did not indicate a significant impact on driver merging actions when the DMS messaging was activated as compared to free flow conditions with no messaging. Collection of relevant project data proved to be problematic for several reasons. In addition to personnel safety issues associated with the placement and retrieval of counting devices on a high speed roadway, unsatisfactory equipment performance and insufficient congestion to activate the DMS messaging hampered efforts. A review of the data that was collected revealed different results taken by the tube counters compared to the older model plate counters. Although variations were not significant from a practical standpoint, a statistical evaluation showed that the data, including volumes, speeds, and classifications from the two sources were not comparable at a 95% level of confidence. Comparison of data from the Iowa DOT’s automated traffic recorders (ATRs) in the area also suggested variations in results from these data collection systems. Additional comparison studies were recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iowa Department of Transportation, like many other state transportation agencies, is experiencing growing congestion and traffic delays in work zones on rural interstate highways. The congestion results in unproductive and wasteful delays for both motorists and commercial vehicles. It also results in hazardous conditions where vehicle stopped in queues on rural interstate highways are being approached by vehicles upstream at very high speeds. The delays also result in driver frustration, making some drivers willing to take unsafe risks in an effort to bypass delays. To reduce the safety hazards and unproductive delays of congested rural interstate work zones, the Iowa Department of Transportation would like to improve its traffic management strategies at these locations. Applying better management practices requires knowledge of the traffic flow properties and driver behavior in and around work zones, and knowledge of possible management strategies. The project reported here and in a companion report documents research which seeks to better understand traffic flow behavior at rural interstate highway work zones and to estimate the traffic carrying capacity of work zone lane closures. In addition, this document also reports on technology available to better manage traffic in and around work zones.