2 resultados para Spatial econometrics
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This project analyzes the characteristics and spatial distributions of motor vehicle crash types in order to evaluate the degree and scale of their spatial clustering. Crashes occur as the result of a variety of vehicle, roadway, and human factors and thus vary in their clustering behavior. Clustering can occur at a variety of scales, from the intersection level, to the corridor level, to the area level. Conversely, other crash types are less linked to geographic factors and are more spatially “random.” The degree and scale of clustering have implications for the use of strategies to promote transportation safety. In this project, Iowa's crash database, geographic information systems, and recent advances in spatial statistics methodologies and software tools were used to analyze the degree and spatial scale of clustering for several crash types within the counties of the Iowa Northland Regional Council of Governments. A statistical measure called the K function was used to analyze the clustering behavior of crashes. Several methodological issues, related to the application of this spatial statistical technique in the context of motor vehicle crashes on a road network, were identified and addressed. These methods facilitated the identification of crash clusters at appropriate scales of analysis for each crash type. This clustering information is useful for improving transportation safety through focused countermeasures directly linked to crash causes and the spatial extent of identified problem locations, as well as through the identification of less location-based crash types better suited to non-spatial countermeasures. The results of the K function analysis point to the usefulness of the procedure in identifying the degree and scale at which crashes cluster, or do not cluster, relative to each other. Moreover, for many individual crash types, different patterns and processes and potentially different countermeasures appeared at different scales of analysis. This finding highlights the importance of scale considerations in problem identification and countermeasure formulation.
Resumo:
Global positioning systems (GPS) offer a cost-effective and efficient method to input and update transportation data. The spatial location of objects provided by GPS is easily integrated into geographic information systems (GIS). The storage, manipulation, and analysis of spatial data are also relatively simple in a GIS. However, many data storage and reporting methods at transportation agencies rely on linear referencing methods (LRMs); consequently, GPS data must be able to link with linear referencing. Unfortunately, the two systems are fundamentally incompatible in the way data are collected, integrated, and manipulated. In order for the spatial data collected using GPS to be integrated into a linear referencing system or shared among LRMs, a number of issues need to be addressed. This report documents and evaluates several of those issues and offers recommendations. In order to evaluate the issues associated with integrating GPS data with a LRM, a pilot study was created. To perform the pilot study, point features, a linear datum, and a spatial representation of a LRM were created for six test roadway segments that were located within the boundaries of the pilot study conducted by the Iowa Department of Transportation linear referencing system project team. Various issues in integrating point features with a LRM or between LRMs are discussed and recommendations provided. The accuracy of the GPS is discussed, including issues such as point features mapping to the wrong segment. Another topic is the loss of spatial information that occurs when a three-dimensional or two-dimensional spatial point feature is converted to a one-dimensional representation on a LRM. Recommendations such as storing point features as spatial objects if necessary or preserving information such as coordinates and elevation are suggested. The lack of spatial accuracy characteristic of most cartography, on which LRM are often based, is another topic discussed. The associated issues include linear and horizontal offset error. The final topic discussed is some of the issues in transferring point feature data between LRMs.