4 resultados para Spatial analysis of geographical data
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
This supplementary project has been undertaken as an effort to continue work previously completed in the Pooled Fund Study of Premature Concrete Pavement Deterioration. As such, it shares the objective of "Identifying the variables that are present in those pavements exhibiting premature deterioration," by collecting additional data and performing statistical analysis of those data. The approach and philosophy of this work are identical to that followed in the above project, and the Pooled Fund Study Final Report provides a detailed description of this process. This project has involved the collection of data for additional sites in the state of Iowa. These sites have then been added to sites collected in the original study, and statistical analysis has been performed on the entire set. It is hoped that this will have two major effects. First, using data from only one state allows for the analysis of a larger set of independent variables with a greater degree of commonality than was possible in the multi-state study, since the data are not limited by state to state differences in data collection and retention. Second, more data on additional sites will increase the degrees of freedom in the model and hopefully add confidence to the results.
Resumo:
Termed the “silent epidemic”, traumatic brain injury is the most debilitating outcome of injury characterized by the irreversibility of its damages, long-term effects on quality of life, and healthcare costs. The latest data available from the Centers for Disease Control and Prevention (CDC) estimate that nationally 50,000 people with traumatic brain injury (TBI) die each year; three times as many are hospitalized and more than twenty times as many are released from emergency room departments (ED) (CDC, 2008)1. The purpose of this report is to describe the epidemiology of TBI in Iowa to help guide policy and programming. TBI is a result of an external force which transfers energy to the brain. Stroke is caused by a disruption of blood flow in the brain that leads to brain injury. Though stroke is recognized as the 3rd leading cause of death nationally2, and is an injury that affects the brain it does not meet the definition a traumatic brain injury and is not included in this report.
Resumo:
This report presents the results of work zone field data analyzed on interstate highways in Missouri to determine the mean breakdown and queue-discharge flow rates as measures of capacity. Several days of traffic data collected at a work zone near Pacific, Missouri with a speed limit of 50 mph were analyzed in both the eastbound and westbound directions. As a result, a total of eleven breakdown events were identified using average speed profiles. The traffic flows prior to and after the onset of congestion were studied. Breakdown flow rates ranged between 1194 to 1404 vphpl, with an average of 1295 vphpl, and a mean queue discharge rate of 1072 vphpl was determined. Mean queue discharge, as used by the Highway Capacity Manual 2000 (HCM), in terms of pcphpl was found to be 1199, well below the HCM’s average capacity of 1600 pcphpl. This reduced capacity found at the site is attributable mainly to narrower lane width and higher percentage of heavy vehicles, around 25%, in the traffic stream. The difference found between mean breakdown flow (1295 vphpl) and queue-discharge flow (1072 vphpl) has been observed widely, and is due to reduced traffic flow once traffic breaks down and queues start to form. The Missouri DOT currently uses a spreadsheet for work zone planning applications that assumes the same values of breakdown and mean queue discharge flow rates. This study proposes that breakdown flow rates should be used to forecast the onset of congestion, whereas mean queue discharge flow rates should be used to estimate delays under congested conditions. Hence, it is recommended that the spreadsheet be refined accordingly.
Resumo:
This project examines similarities and differences between the automated condition data collected on and off county paved roads and the manual condition data collected by Iowa Department of Transportation (DOT) staff in 2000 and 2001. Also, the researchers will provide staff support to the advisory committee in exploring other options to the highway need process. The results show that the automated condition data can be used in a converted highway needs process with no major differences between the two methods. Even though the foundation rating difference was significant, the foundation rating weighting factor in HWYNEEDS is minimal and should not have a major impact. In terms of RUTF formula based distribution, the results clearly show the superiority of the condition-based analysis compared to the non-condition based. That correlation can be further enhanced by adding more distress variables to the analysis.