34 resultados para Soybean process
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
State Agency Audit Report
Resumo:
State Agency Audit Report
Resumo:
State Agency Audit Report
Resumo:
Other Audit Reports - State Leasing
Resumo:
Report by Iowa Department of Transportation about pavements materials.
Resumo:
State Audit Reports
Validation of the New Mix Design Process for Cold In-Place Rehabilitation Using Foamed Asphalt, 2007
Resumo:
Asphalt pavement recycling has grown dramatically over the last few years as a viable technology to rehabilitate existing asphalt pavements. Iowa's current Cold In-place Recycling (CIR) practice utilizes a generic recipe specification to define the characteristics of the CIR mixture. As CIR continues to evolve, the desire to place CIR mixture with specific engineering properties requires the use of a mix design process. A new mix design procedure was developed for Cold In-place Recycling using foamed asphalt (CIR-foam) in consideration of its predicted field performance. The new laboratory mix design process was validated against various Reclaimed Asphalt Pavement (RAP) materials to determine its consistency over a wide range of RAP materials available throughout Iowa. The performance tests, which include dynamic modulus test, dynamic creep test and raveling test, were conducted to evaluate the consistency of a new CIR-foam mix design process to ensure reliable mixture performance over a wide range of traffic and climatic conditions. The “lab designed” CIR will allow the pavement designer to take the properties of the CIR into account when determining the overlay thickness.
Resumo:
Use of resistant soybean varieties is a very effective strategy for managing soybean cyst nematode (SCN), and numerous SCN-resistant soybean varieties are available for Iowa soybean growers. Each year, public and private SCN-resistant soybean varieties are evaluated in SCN-infested fields throughout Iowa by Iowa State University personnel. The research described in this report was performed to assess the agronomic performance of maturity group (MG) I, II, and III SCN-resistant soybean varieties and to determine the effects of the varieties on SCN numbers or population densities.
Resumo:
Soybean cyst nematode (SCN) causes the greatest yield loss of any single pathogen of soybean in Iowa. An estimated 50 million bushels were lost in Iowa to SCN in 2004. Damage from SCN is not limited to yield loss from root feeding; SCN also makes other diseases like sudden death syndrome, iron deficiency chlorosis, Pythium, Phytophthora root and stem rot and brown stem rot worse. Once established in a field, SCN cannot be eradicated. However, the use of multiple management tactics can help minimize yield loss.
Resumo:
Producers continually strive for high yielding soybeans. The state-wide average yield for Iowa is now more than 50 bu./acre. The “yield plateau” reported by many producers does not exist, and is a perception largely brought on by misuse of an oversimplified management system. High yielding soybeans are achieved through improved and targeted management decisions. Improved agronomic decisions for soybeans are critical since soybean is very sensitive to stresses that influence soybean growth, development and yield.
Resumo:
The planting date for soybeans should be based on seedbed conditions and calendar date rather than soil temperature. The optimum time to plant soybeans in Iowa is the last week of April for the southern two thirds of Iowa and the first week of May for the northern one third of Iowa.
Resumo:
The planting date for soybeans should be based on seedbed conditions and calendar date rather than soil temperature. The optimum time to plant soybeans in Iowa is the last week of April for the southern two thirds of Iowa and the first week of May for the northern one third of Iowa.
Resumo:
The first commercial quantities of a soybean oil with about three percent linolenic acid oil were produced in Iowa in 1994 through a collaboration with Pioneer Hi-Bred International, Inc. Continued to breed new soybean varieties with a focus on a even lower linolenic acid content of one percent. I was interested in understanding whether the oil would be stable enough to eliminate the need for chemical hydrogenation. During the process of increasing one percent linolenic acid seed varieties to obtain oil for testing, the Food and Drug Administration announced it would require labeling for trans fat beginning in 2006. Instead of using the seed of the new varieties to obtain oil for testing, it was used for further seed production so that commercial quantities of the one percent linolenic acid oil could be available as quickly as possible.
Resumo:
The Quadrennial Needs Study was developed to assist in the identification of highway needs and the distribution of road funds in Iowa among the various highway entities. During the period 1978 to 1990, the process has seen large shifts in needs and associated funding distribution in individual counties with no apparent reasons. This study investigated the reasons for such shifts. The study identified program inputs that can result in major shifts in needs either up or down from minor changes in the input values. The areas of concern were identified as the condition ratings for roads and structures, traffic volume and mix counts, and the assignment of construction cost areas. Eight counties exhibiting the large shifts (greater than 30%) in needs over time were used to test the sensitivity of the variables. A ninth county was used as the base line for the study. Recommendations are identified for improvements in the process of data collection in the areas of road and structure condition--rating, traffic, and in the assignment of construction cost areas. Advice is also offered in how to account for changes in jurisdiction between successive studies. Maintenance cost area assignment and levels of maintenance service are identified as requiring additional detailed research.
Resumo:
A laboratory study has been conducted with two aims in mind. The first goal was to develop a description of how a cutting edge scrapes ice from the road surface. The second goal was to investigate the extent, if any, to which serrated blades were better than un-serrated or "classical" blades at ice removal. The tests were conducted in the Ice Research Laboratory at the Iowa Institute of Hydraulic Research of the University of Iowa. A specialized testing machine, with a hydraulic ram capable of attaining scraping velocities of up to 30 m.p.h. was used in the testing. In order to determine the ice scraping process, the effects of scraping velocity, ice thickness, and blade geometry on the ice scraping forces were determined. Higher ice thickness lead to greater ice chipping (as opposed to pulverization at lower thicknesses) and thus lower loads. Behavior was observed at higher velocities. The study of blade geometry included the effect of rake angle, clearance angle, and flat width. The latter were found to be particularly important in developing a clear picture of the scraping process. As clearance angle decreases and flat width increases, the scraping loads show a marked increase, due to the need to re-compress pulverized ice fragments. The effect of serrations was to decrease the scraping forces. However, for the coarsest serrated blades (with the widest teeth and gaps) the quantity of ice removed was significantly less than for a classical blade. Finer serrations appear to be able to match the ice removal of classical blades at lower scraping loads. Thus, one of the recommendations of this study is to examine the use of serrated blades in the field. Preliminary work (by Nixon and Potter, 1996) suggests such work will be fruitful. A second and perhaps more challenging result of the study is that chipping of ice is more preferable to pulverization of the ice. How such chipping can be forced to occur is at present an open question.