10 resultados para Source profiles
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
Pavement profile or smoothness has been identified nationally as a good measure of highway user satisfaction. This has led highway engineers to measure profiles of both operating and new highways. Operational highway profiles are often measured with high-speed inertial profilers. New highway profiles are usually measured with profilographs in order to establish incentives or disincentives for pavement construction. In most cases, these two processes do not measure the same value from the “cradle to grave” life of pavements. In an attempt to correct the inconsistency between measuring techniques, lightweight profilers intended to produce values to be used for construction acceptance are being made that measure the same profile as high-speed inertial profilers. Currently, two profiler systems have been identified that can measure pavement profile during construction. This research has produced a field evaluation of the two systems. The profilers evaluated in this study are able to detect roughness in the final profile, including localized roughness and roughness at joints. Dowel basket ripple is a significant source of pavement surface roughness. The profilers evaluated in this study are able to detect dowel basket ripple with enough clarity to warn the paving crew. String-line disturbances degrade smoothness. The profilers evaluated in this study are able to detect some string-line disturbances during paving operations. The profilers evaluated in this study are not currently able to produce the same absolute International Roughness Index (IRI) values on the plastic concrete that can be measured by inertial profilers on the hardened concrete. Construction application guidelines are provided.
Resumo:
Water fact sheet for Iowa Department of Natural Resources and the Geological Bureau.
Resumo:
Monitoring of Iowa's surface waters during the past five years has demonstrated the regular occurrence of fecel bacteria in surface water resources.
Resumo:
The Department’s 2007 Greenhouse Gas Inventory is a refinement of previous statewide inventories. It is a bottom-up inventory of two sectors – fossil fuel combustion at federally-recognized major sources of air pollution and fossil fuel combustion and ethanol fermentation at dry mill ethanol plants. This is the first bottomup greenhouse gas inventory conducted for Iowa and the first bottom-up greenhouse gas inventory of ethanol plants in the nation that the Department is aware of. In a bottom-up inventory, facility-specific activity data is used to calculate emissions. In a top-down inventory, aggregate activity data is used to calculate emissions. For example, this bottom-up inventory calculates greenhouse gas emissions from the fossil fuel combustion at each individual facility instead of using the total amount of fossil fuel combusted state-wide, which would be a top-down inventory method. The advantage to a bottom-up inventory is that the calculations are more accurate than a top-down inventory. However, because the two methods differ, the results from a bottom-up inventory are not directly comparable to a top-down inventory.
Resumo:
This research project combined various datasets, existing and created for this project, into an Interactive Mapping Service (IMS) for use by Iowa DOT personnel, county planning and zoning departments and the public in order to make more informed decisions regarding aggregate sources and future access to them. Iowa DOT Technical Advisory Committee meetings were held, along with public forum presentations, in order to understand better the social, ecological and economic limitations to extracting aggregate. The information needed by potential users was conveyed and integrated into a single informational source, the Aggregate Planning IMS.
Resumo:
This final report to the Iowa Watershed Improvement Review Board by the City of Remsen Utilities consists of accomplishments made by the Remsen Utilities as per this agreement. The City of Remsen Utilities did in fact purchase approximately 27 acres of land lying upstream of the city’s water well field. The land was purchased from Mr. Larry Rodesch and Mr. Rich Harpenau for the purpose of removing nitrates from Remsen’s water source and establishing native prairie grasses to assist in this removal.
Resumo:
There are a few basic fundamentals you need before starting a source water protection project. These include information on your community’s wells (or intakes), aquifer, source water area, and potential contaminants. All of these essential items should be included in your community’s source water information, you may find this information in the workbook and guidebook.
Resumo:
There are a few basic fundamentals you need before starting a source water protection project. These include information on your community’s wells (or intakes), aquifer, source water area, and potential contaminants. All of these essential items should be included in your community’s source water information, you may find this information in the workbook and guidebook.
Resumo:
US Geological Survey (USGS) based elevation data are the most commonly used data source for highway hydraulic analysis; however, due to the vertical accuracy of USGS-based elevation data, USGS data may be too “coarse” to adequately describe surface profiles of watershed areas or drainage patterns. Additionally hydraulic design requires delineation of much smaller drainage areas (watersheds) than other hydrologic applications, such as environmental, ecological, and water resource management. This research study investigated whether higher resolution LIDAR based surface models would provide better delineation of watersheds and drainage patterns as compared to surface models created from standard USGS-based elevation data. Differences in runoff values were the metric used to compare the data sets. The two data sets were compared for a pilot study area along the Iowa 1 corridor between Iowa City and Mount Vernon. Given the limited breadth of the analysis corridor, areas of particular emphasis were the location of drainage area boundaries and flow patterns parallel to and intersecting the road cross section. Traditional highway hydrology does not appear to be significantly impacted, or benefited, by the increased terrain detail that LIDAR provided for the study area. In fact, hydrologic outputs, such as streams and watersheds, may be too sensitive to the increased horizontal resolution and/or errors in the data set. However, a true comparison of LIDAR and USGS-based data sets of equal size and encompassing entire drainage areas could not be performed in this study. Differences may also result in areas with much steeper slopes or significant changes in terrain. LIDAR may provide possibly valuable detail in areas of modified terrain, such as roads. Better representations of channel and terrain detail in the vicinity of the roadway may be useful in modeling problem drainage areas and evaluating structural surety during and after significant storm events. Furthermore, LIDAR may be used to verify the intended/expected drainage patterns at newly constructed highways. LIDAR will likely provide the greatest benefit for highway projects in flood plains and areas with relatively flat terrain where slight changes in terrain may have a significant impact on drainage patterns.
Resumo:
The City of Remsen is proactively addressing an increase of nitrates in their public water supply before it becomes a financial catastrophe for them. An intensive assessment was conducted by the Iowa DNR Source Water Protection program as one of four pilot projects in the state. This assessment far surpassed standard desktop assessments and gathered monitoring information in-the-field led by a local watershed group. This was incorporated into a computer modeling program to help the local watershed group discuss alternatives. This comprehensive approach clearly identified the source of nitrate infiltration as a cropland area adjacent to the City well field. Many options were evaluated but only one option provided an economical, viable and secure answer to the water supply needs of Remsen for generations to come. The watershed planning group chose to seek the purchase of this critical area of cropland and convert it to a deep rooted mixture of native grasses. This WIRB funding is intended to be used to acquire a small area totaling 21.1 acres. It represents about 22% of the total local project effort. This will be added to the existing City well field of 40.2 acres and another piece of adjacent property, 35.34 acres, that the City recently acquired as part of an overall aggressive program to protect the community water supply. The City has a signed purchase agreement for 14.4 acres of the 21.1 and a strong verbal commitment to obtain the remaining 5.7 acres. This project has been very active for almost 2 years and is ready to implement immediately upon funding notification. The establishment of native grasses, funded by the local chapter of Pheasants Forever, will take approximately the next three years of operation & maintenance.