27 resultados para Soil-pile Interaction

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

80.00% 80.00%

Publicador:

Resumo:

More and more, integral abutment bridges are being used in place of the more traditional bridge designs with expansion releases. In this study, states which use integral abutment bridges were surveyed to determine their current practice in the design of these structures. To study piles in integral abutment bridges, a finite element program for the soil-pile system was developed (1) with materially and geometrically nonlinear, two and three dimensional beam elements and (2) with a nonlinear, Winkler soil model with vertical, horizontal, and pile tip springs. The model was verified by comparison to several analytical and experimental examples. A simplified design model for analyzing piles in integral abutment bridges is also presented. This model grew from previous analytical models and observations of pile behavior. The design model correctly describes the essential behavioral characteristics of the pile and conservatively predicts the vertical load-carrying capacity. Analytical examples are presented to illustrate the effects of lateral displacements on the ultimate load capacity of a pile. These examples include friction and end-bearing piles; steel, concrete, and timber piles; and bending about the weak, strong, and 45° axes for H piles. The effects of cyclic loading are shown for skewed and nonskewed bridges. The results show that the capacity of friction piles is not significantly affected by lateral displacements, but the capacity of end-bearing piles is reduced. Further results show that the longitudinal expansion of the bridge can introduce a vertical preload on the pile.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This investigation is the final phase of a three part study whose overall objectives were to determine if a restraining force is required to prevent inlet uplift failures in corrugated metal pipe (CMP) installations, and to develop a procedure for calculating the required force when restraint is required. In the initial phase of the study (HR-306), the extent of the uplift problem in Iowa was determined and the forces acting on a CMP were quantified. In the second phase of the study (HR- 332), laboratory and field tests were conducted. Laboratory tests measured the longitudinal stiffness ofCMP and a full scale field test on a 3.05 m (10 ft) diameter CMP with 0.612 m (2 ft) of cover determined the soil-structure interaction in response to uplift forces. Reported herein are the tasks that were completed in the final phase of the study. In this phase, a buried 2.44 m (8 ft) CMP was tested with and without end-restraint and with various configurations of soil at the inlet end of the pipe. A total of four different soil configurations were tested; in all tests the soil cover was constant at 0.61 m (2 ft). Data from these tests were used to verify the finite element analysis model (FEA) that was developed in this phase of the research. Both experiments and analyses indicate that the primary soil contribution to uplift resistance occurs in the foreslope and that depth of soil cover does not affect the required tiedown force. Using the FEA, design charts were developed with which engineers can determine for a given situation if restraint force is required to prevent an uplift failure. If an engineer determines restraint is needed, the design charts provide the magnitude of the required force. The design charts are applicable to six gages of CMP for four flow conditions and two types of soil.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This Phase I report describes a preliminary evaluation of a new compaction monitoring system developed by Caterpillar, Inc. (CAT), for use as a quality control and quality assurance (QC/QA) tool during earthwork construction operations. The CAT compaction monitoring system consists of an instrumented roller with sensors to monitor machine power output in response to changes in soil machine interaction and is fitted with a global positioning system (GPS) to monitor roller location in real time. Three pilot tests were conducted using CAT’s compaction monitoring technology. Two of the sites were located in Peoria, Illinois, at the Caterpillar facilities. The third project was an actual earthwork grading project in West Des Moines, Iowa. Typical construction operations for all tests included the following steps: (1) aerate/till existing soil; (2) moisture condition soil with water truck (if too dry); (3) remix; (4) blade to level surface; and (5) compact soil using the CAT CP-533E roller instrumented with the compaction monitoring sensors and display screen. Test strips varied in loose lift thickness, water content, and length. The results of the study show that it is possible to evaluate soil compaction with relatively good accuracy using machine energy as an indicator, with the advantage of 100% coverage with results in real time. Additional field trials are necessary, however, to expand the range of correlations to other soil types, different roller configurations, roller speeds, lift thicknesses, and water contents. Further, with increased use of this technology, new QC/QA guidelines will need to be developed with a framework in statistical analysis. Results from Phase I revealed that the CAT compaction monitoring method has a high level of promise for use as a QC/QA tool but that additional testing is necessary in order to prove its validity under a wide range of field conditions. The Phase II work plan involves establishing a Technical Advisor Committee, developing a better understanding of the algorithms used, performing further testing in a controlled environment, testing on project sites in the Midwest, and developing QC/QA procedures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The highway departments of all fifty states were contacted to find the extent of application of integral abutment bridges, to survey the different guidelines used for analysis and design of integral abutment bridges, and to assess the performance of such bridges through the years. The variation in design assumptions and length limitations among the various states in their approach to the use of integral abutments is discussed. The problems associated with lateral displacements at the abutment, and the solutions developed by the different states for most of the ill effects of abutment movements are summarized in the report. An algorithm based on a state-of-the-art nonlinear finite element procedure was developed and used to study piling stresses and pile-soil interaction in integral abutment bridges. The finite element idealization consists of beam-column elements with geometric and material nonlinearities for the pile and nonlinear springs for the soil. An idealized soil model (modified Ramberg-Osgood model) was introduced in this investigation to obtain the tangent stiffness of the nonlinear spring elements. Several numerical examples are presented in order to establish the reliability of the finite element model and the computer software developed. Three problems with analytical solutions were first solved and compared with theoretical solutions. A 40 ft H pile (HP 10 X 42) in six typical Iowa soils was then analyzed by first applying a horizontal displacement (to simulate bridge motion) and no rotation at the top and then applying a vertical load V incrementally until failure occurred. Based on the numerical results, the failure mechanisms were generalized to be of two types: (a) lateral type failure and (b) vertical type failure. It appears that most piles in Iowa soils (sand, soft clay and stiff clay) failed when the applied vertical load reached the ultimate soil frictional resistance (vertical type failure). In very stiff clays, however, the lateral type failure occurs before vertical type failure because the soil is sufficiently stiff to force a plastic hinge to form in the pile as the specified lateral displacement is applied. Preliminary results from this investigation showed that the vertical load-carrying capacity of H piles is not significantly affected by lateral displacements of 2 inches in soft clay, stiff clay, loose sand, medium sand and dense sand. However, in very stiff clay (average blow count of 50 from standard penetration tests), it was found that the vertical load carrying capacity of the H pile is reduced by about 50 percent for 2 inches of lateral displacement and by about 20 percent for lateral displacement of 1 inch. On the basis of the preliminary results of this investigation, the 265-feet length limitation in Iowa for integral abutment concrete bridges appears to be very conservative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results ofLRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured loaddisplacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expansion joints increase both the initial cost and the maintenance cost of bridges. Integral abutment bridges provide an attractive design alternative because expansion joints are eliminated from the bridge itself. However, the piles in these bridges are subjected to horizontal movement as the bridge expands and contracts during temperature changes. The objective of this research was to develop a method of designing piles for these conditions. Separate field tests simulating a pile and a bridge girder were conducted for three loading cases: (1) vertical load only, (2) horizontal displacement of pile head only, and (3) combined horizontal displacement of pile head with subsequent vertical load. Both tests (1) and (3) reached the same ultimate vertical load, that is, the horizontal displacement had no effect on the vertical load capacity. Several model tests were conducted in sand with a scale factor of about 1:10. Experimental results from both the field and model tests were used to develop the vertical and horizontal load-displacement properties of the soil. These properties were input into the finite element computer program Integral Abutment Bridge Two-Dimensional (IAB2D), which was developed under a previous research contract. Experimental and analytical results compared well for the test cases. Two alternative design methods, both based upon the American Association of State Highway and Transportation Officials (AASHTO) Specification, were developed. Alternative One is quite conservative relative to IAB2D results and does not permit plastic redistribution of forces. Alternative Two is also conservative when compared to IAB2D, but plastic redistribution is permitted. To use Alternative Two, the pile cross section must have sufficient inelastic rotation capacity before local buckling occurs. A design example for a friction pile and an end-bearing pile illustrates both alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Federal Highway Administration (FHWA) mandated utilizing the Load and Resistance Factor Design (LRFD) approach for all new bridges initiated in the United States after October 1, 2007. As a result, there has been a progressive move among state Departments of Transportation (DOTs) toward an increased use of the LRFD in geotechnical design practices. For the above reasons, the Iowa Highway Research Board (IHRB) sponsored three research projects: TR-573, TR-583 and TR-584. The research information is summarized in the project web site (http://srg.cce.iastate.edu/lrfd/). Two reports of total four volumes have been published. Report volume I by Roling et al. (2010) described the development of a user-friendly and electronic database (PILOT). Report volume II by Ng et al. (2011) summarized the 10 full-scale field tests conducted throughout Iowa and data analyses. This report presents the development of regionally calibrated LRFD resistance factors for bridge pile foundations in Iowa based on reliability theory, focusing on the strength limit states and incorporating the construction control aspects and soil setup into the design process. The calibration framework was selected to follow the guidelines provided by the American Association of State Highway and Transportation Officials (AASHTO), taking into consideration the current local practices. The resistance factors were developed for general and in-house static analysis methods used for the design of pile foundations as well as for dynamic analysis methods and dynamic formulas used for construction control. The following notable benefits to the bridge foundation design were attained in this project: 1) comprehensive design tables and charts were developed to facilitate the implementation of the LRFD approach, ensuring uniform reliability and consistency in the design and construction processes of bridge pile foundations; 2) the results showed a substantial gain in the factored capacity compared to the 2008 AASHTO-LRFD recommendations; and 3) contribution to the existing knowledge, thereby advancing the foundation design and construction practices in Iowa and the nation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report of Conservation Program Summary produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume (this volume) summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several superstructure design methodologies have been developed for low volume road bridges by the Iowa State University Bridge Engineering Center. However, to date no standard abutment designs have been developed. Thus, there was a need to establish an easy to use design methodology in addition to generating generic abutment standards and other design aids for the more common substructure systems used in Iowa. The final report for this project consists of three volumes. The first volume summarizes the research completed in this project. A survey of the Iowa County Engineers was conducted from which it was determined that while most counties use similar types of abutments, only 17 percent use some type of standard abutment designs or plans. A literature review revealed several possible alternative abutment systems for future use on low volume road bridges in addition to two separate substructure lateral load analysis methods. These consisted of a linear and a non-linear method. The linear analysis method was used for this project due to its relative simplicity and the relative accuracy of the maximum pile moment when compared to values obtained from the more complex non-linear analysis method. The resulting design methodology was developed for single span stub abutments supported on steel or timber piles with a bridge span length ranging from 20 to 90 ft and roadway widths of 24 and 30 ft. However, other roadway widths can be designed using the foundation design template provided. The backwall height is limited to a range of 6 to 12 ft, and the soil type is classified as cohesive or cohesionless. The design methodology was developed using the guidelines specified by the American Association of State Highway Transportation Officials Standard Specifications, the Iowa Department of Transportation Bridge Design Manual, and the National Design Specifications for Wood Construction. The second volume introduces and outlines the use of the various design aids developed for this project. Charts for determining dead and live gravity loads based on the roadway width, span length, and superstructure type are provided. A foundation design template was developed in which the engineer can check a substructure design by inputting basic bridge site information. Tables published by the Iowa Department of Transportation that provide values for estimating pile friction and end bearing for different combinations of soils and pile types are also included. Generic standard abutment plans were developed for which the engineer can provide necessary bridge site information in the spaces provided. These tools enable engineers to design and detail county bridge substructures more efficiently. The third volume (this volume) provides two sets of calculations that demonstrate the application of the substructure design methodology developed in this project. These calculations also verify the accuracy of the foundation design template. The printouts from the foundation design template are provided at the end of each example. Also several tables provide various foundation details for a pre-cast double tee superstructure with different combinations of soil type, backwall height, and pile type.