10 resultados para Soil - Absorption and adsorption

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report produced by Iowa Departmment of Agriculture and Land Stewardship

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tillage systems play a significant role in agricultural production throughout Iowa and the Midwest. It has been well documented that increased tillage intensities can reduce soil organic matter in the topsoil due to increased microbial activity and carbon (C ) oxidation. The potential loss of soil organic matter due to tillage operations is much higher for high organic matter soils than low organic matter soils. Tillage effects on soil organic matter can be magnified through soil erosion and loss of soil productivity. Soil organic matter is a natural reservoir for nutrients, buffers against soil erosion, and improves the soil environment to sustain soil productivity. Maintaining soil productivity requires an agriculture management system that maintains or improves soil organic matter content. Combining cropping systems and conservation tillage practices, such as no-tillage, strip-tillage, or ridge-tillage, are proven to be very effective in improving soil organic matter and soil quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A newsletter produced by Iowa Department of Agriculture and Land Stewardship. The DSC is responsible for state leadership in the protection and management of soil, water and mineral resources, assisting soil and water conservation districts and private landowners to meet their agricultural and environmental protection needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IDALS stands for Iowa Department of Agriculture and Land Stewardship. IDALS’s mission is to provide leadership for all aspects of agriculture in Iowa, ensure consumer protection and promote the responsible use of our natural resources. DSC stands for the Division of Soil Conservation and is the division within IDALS responsible for state leadership in the protection and management of soil, water and mineral resources. Learn more about IDALS at www.iowaagriculture.gov

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A booklet about soil, soil ecology and soil conservation produced by the Iowa Living Roadway Trust Fund and the Iowa Department of Transportation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of the field-scale Erosion Productivity Impact Calculator (EPIC) model was initiated in 1981 to support assessments of soil erosion impacts on soil productivity for soil, climate, and cropping conditions representative of a broad spectrum of U.S. agricultural production regions. The first major application of EPIC was a national analysis performed in support of the 1985 Resources Conservation Act (RCA) assessment. The model has continuously evolved since that time and has been applied for a wide range of field, regional, and national studies both in the U.S. and in other countries. The range of EPIC applications has also expanded greatly over that time, including studies of (1) surface runoff and leaching estimates of nitrogen and phosphorus losses from fertilizer and manure applications, (2) leaching and runoff from simulated pesticide applications, (3) soil erosion losses from wind erosion, (4) climate change impacts on crop yield and erosion, and (5) soil carbon sequestration assessments. The EPIC acronym now stands for Erosion Policy Impact Climate, to reflect the greater diversity of problems to which the model is currently applied. The Agricultural Policy EXtender (APEX) model is essentially a multi-field version of EPIC that was developed in the late 1990s to address environmental problems associated with livestock and other agricultural production systems on a whole-farm or small watershed basis. The APEX model also continues to evolve and to be utilized for a wide variety of environmental assessments. The historical development for both models will be presented, as well as example applications on several different scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bridge approach settlement and the formation of the bump is a common problem in Iowa that draws upon considerable resources for maintenance and creates a negative perception in the minds of transportation users. This research study was undertaken to investigate bridge approach problems and develop new concepts for design, construction, and maintenance that will reduce this costly problem. As a result of the research described in this report, the following changes are suggested for implementation on a pilot test basis: • Use porous backfill behind the abutment and/or geocomposite drainage systems to improve drainage capacity and reduce erosion around the abutment. • On a pilot basis, connect the approach slab to the bridge abutment. Change the expansion joint at the bridge to a construction joint of 2 inch. Use a more effective joint sealing system at the CF joint. Change the abutment wall rebar from #5 to #7 for non-integral abutments. • For bridges with soft foundation or embankment soils, implement practices of better compaction, preloading, ground improvement, soil removal and replacement, or soil reinforcement that reduce time-dependent post construction settlements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tillage and manure application practices significantly impact surface and ground water quality in Iowa and other Midwestern states. Tillage and manure application that incorporates residue and disturbs soil result in higher levels of soil erosion and surface runoff. Phosphorus and sediment loading are closely linked to the increase in soil erosion and surface water runoff. Manure application (i.e., injection or incorporation) reduces surface residue cover, which can worsen soil erosion regardless of the tillage management system being used. An integrated system approach to manure and tillage management is critical to ensure effi cient nutrient use and improvement of soil and water quality. This approach, however, requires changes in manure application technology and tillage system management to ensure the success of an integrated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bridge approach settlement and the formation of the bump is a common problem in Iowa that draws upon considerable resources for maintenance and creates a negative perception in the minds of transportation users. This research study was undertaken to investigate bridge approach problems and develop new concepts for design, construction, and maintenance that will reduce this costly problem. As a result of the research described in this report, the following changes are suggested for implementation on a pilot test basis: • Use porous backfill behind the abutment and/or geocomposite drainage systems to improve drainage capacity and reduce erosion around the abutment. • On a pilot basis, connect the approach slab to the bridge abutment. Change the expansion joint at the bridge to a construction joint of 2 inch. Use a more effective joint sealing system at the CF joint. Change the abutment wall rebar from #5 to #7 for non-integral abutments. • For bridges with soft foundation or embankment soils, implement practices of better compaction, preloading, ground improvement, soil removal and replacement, or soil reinforcement that reduce time-dependent post construction settlements.