5 resultados para Size-dependent phase transitions
em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States
Resumo:
The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges and structures that are a part of the state’s primary highway system, which includes the Interstate, US, and Iowa highway routes. A pilot study was conducted for six bridges in two Iowa river basins—the Cedar River Basin and the South Skunk River Basin—to develop a methodology to evaluate their vulnerability to climate change and extreme weather. The six bridges had been either closed or severely stressed by record streamflow within the past seven years. An innovative methodology was developed to generate streamflow scenarios given climate change projections. The methodology selected appropriate rainfall projection data to feed into a streamflow model that generated continuous peak annual streamflow series for 1960 through 2100, which were used as input to PeakFQ to estimate return intervals for floods. The methodology evaluated the plausibility of rainfall projections and credibility of streamflow simulation while remaining consistent with U.S. Geological Survey (USGS) protocol for estimating the return interval for floods. The results were conveyed in an innovative graph that combined historical and scenario-based design metrics for use in bridge vulnerability analysis and engineering design. The pilot results determined the annual peak streamflow response to climate change likely will be basin-size dependent, four of the six pilot study bridges would be exposed to increased frequency of extreme streamflow and would have higher frequency of overtopping, the proposed design for replacing the Interstate 35 bridges over the South Skunk River south of Ames, Iowa is resilient to climate change, and some Iowa DOT bridge design policies could be reviewed to consider incorporating climate change information.
Resumo:
Presented in this report is an investigation of the use of "sand-lightweight" concrete in prestressed concrete structures. The sand-lightweight concrete consists of 100% sand substitution for fines, along with Idealite coarse and medium lightweight aggregate and Type I Portland Cement.
Resumo:
In recent years, thin whitetopping has evolved as a viable rehabilitation technique for deteriorated asphalt cement concrete (ACC) pavements. Numerous projects have been constructed and tested, allowing researchers to identify the important elements contributing to the projects’ successes. These elements include surface preparation, overlay thickness, synthetic fiber reinforcement usage, joint spacing, and joint sealing. Although the main factors affecting thin whitetopping performance have been identified by previous research, questions still existed as to the optimum design incorporating these variables. The objective of this research is to investigate the interaction between these variables over time. Laboratory testing and field testing were conducted to achieve the research objectives. Laboratory testing involved shear testing of the bond between the portland cement concrete (PCC) overlay and the ACC surface. Field testing involved falling weight deflectometer deflection responses, measurement of joint faulting and joint opening, and visual distress surveys on the 9.6-mile project. The project was located on Iowa Highway 13 extending north from the city of Manchester, Iowa, to Iowa Highway 3 in Delaware County. Variables investigated include ACC surface preparation, PCC thickness, slab size, synthetic fiber reinforcement usage, and joint spacing. This report documents the planning, construction, and performance of each variable in the time period from summer 2002 through spring 2006. The project has performed well with only minor distress identification since its construction.
Resumo:
Currently, individuals including designers, contractors, and owners learn about the project requirements by studying a combination of paper and electronic copies of the construction documents including the drawings, specifications (standard and supplemental), road and bridge standard drawings, design criteria, contracts, addenda, and change orders. This can be a tedious process since one needs to go back and forth between the various documents (paper or electronic) to obtain information about the entire project. Object-oriented computer-aided design (OO-CAD) is an innovative technology that can bring a change to this process by graphical portrayal of information. OO-CAD allows users to point and click on portions of an object-oriented drawing that are then linked to relevant databases of information (e.g., specifications, procurement status, and shop drawings). The vision of this study is to turn paper-based design standards and construction specifications into an object-oriented design and specification (OODAS) system or a visual electronic reference library (ERL). Individuals can use the system through a handheld wireless book-size laptop that includes all of the necessary software for operating in a 3D environment. All parties involved in transportation projects can access all of the standards and requirements simultaneously using a 3D graphical interface. By using this system, users will have all of the design elements and all of the specifications readily available without concerns of omissions. A prototype object-oriented model was created and demonstrated to potential users representing counties, cities, and the state. Findings suggest that a system like this could improve productivity to find information by as much as 75% and provide a greater sense of confidence that all relevant information had been identified. It was also apparent that this system would be used by more people in construction than in design. There was also concern related to the cost to develop and maintain the complete system. The future direction should focus on a project-based system that can help the contractors and DOT inspectors find information (e.g., road standards, specifications, instructional memorandums) more rapidly as it pertains to a specific project.
Resumo:
The major objective of this research project is to utilize thermal analysis techniques in conjunction with x-ray analysis methods to identify and explain chemical reactions that promote aggregate related deterioration in Portland cement concrete. The first year of this project has been spent obtaining and analyzing limestone and dolomite samples that exhibit a wide range of field service performance. Most of the samples chosen for the study also had laboratory durability test information (ASTM C 666, method B) that was readily available. Preliminary test results indicate that a strong relationship exists between the average crystallite size of the limestone (calcite) specimens and their apparent decomposition temperatures as measured by thermogravimetric analysis. Also, premature weight loss in the thermogravimetric analysis tests appeared to be related to the apparent decomposition temperature of the various calcite test specimens.