5 resultados para Single Track Vehicle Dynamics.

em Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of chemicals is a critical part of a pro-active winter maintenance program. However, ensuring that the correct chemicals are used is a challenge. On the one hand, budgets are limited, and thus price of chemicals is a major concern. On the other, performance of chemicals, especially at lower pavement temperatures, is not always assured. Two chemicals that are used extensively by the Iowa Department of Transportation (Iowa DOT) are sodium chloride (or salt) and calcium chloride. While calcium chloride can be effective at much lower temperatures than salt, it is also considerably more expensive. Costs for a gallon of salt brine are typically in the range of $0.05 to $0.10, whereas calcium chloride brine may cost in the range of $1.00 or more per gallon. These costs are of course subject to market forces and will thus change from year to year. The idea of mixing different winter maintenance chemicals is by no means new, and in general discussions it appears that many winter maintenance personnel have from time to time mixed up a jar of chemicals and done some work around the yard to see whether or not their new mix “works.” There are many stories about the mixture turning to “mayonnaise” (or, more colorfully, to “snot”) suggesting that mixing chemicals may give rise to some problems most likely due to precipitation. Further, the question of what constitutes a mixture “working” in this context is a topic of considerable discussion. In this study, mixtures of salt brine and calcium chloride brine were examined to determine their ice melting capability and their freezing point. Using the results from these tests, a linear interpolation model of the ice melting capability of mixtures of the two brines has been developed. Using a criterion based upon the ability of the mixture to melt a certain thickness of ice or snow (expressed as a thickness of melt-water equivalent), the model was extended to develop a material cost per lane mile for the full range of possible mixtures as a function of temperature. This allowed for a comparison of the performance of the various mixtures. From the point of view of melting capacity, mixing calcium chloride brine with salt brine appears to be effective only at very low temperatures (around 0° F and below). However, the approach described herein only considers the material costs, and does not consider application costs or other aspects of the mixture performance than melting capacity. While a unit quantity of calcium chloride is considerably more expensive than a unit quantity of sodium chloride, it also melts considerably more ice. In other words, to achieve the same result, much less calcium chloride brine is required than sodium chloride brine. This is important in considering application costs, because it means that a single application vehicle (for example, a brine dispensing trailer towed behind a snowplow) can cover many more lane miles with calcium chloride brine than with salt brine before needing to refill. Calculating exactly how much could be saved in application costs requires an optimization of routes used in the application of liquids in anti-icing, which is beyond the scope of the current study. However, this may be an area that agencies wish to pursue for future investigation. In discussion with winter maintenance personnel who use mixtures of sodium chloride and calcium chloride, it is evident that one reason for this is because the mixture is much more persistent (i.e. it stays longer on the road surface) than straight salt brine. Operationally this persistence is very valuable, but at present there are not any established methods to measure the persistence of a chemical on a pavement. In conclusion, the study presents a method that allows an agency to determine the material costs of using various mixtures of salt brine and calcium chloride brine. The method is based upon the requirement of melting a certain quantity of snow or ice at the ice-pavement interface, and on how much of a chemical or of a mixture of chemicals is required to do that.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The overall objective of the work summarized in this report and in the interim report was to study the effects of targeted implement-of-husbandry loads. This report is to complement phase I of this work, which was summarized in the interim report, entitled Response of Iowa Pavements to Heavy Agricultural Loads (December 1999). The response of newly constructed Portland cement concrete (PCC) and asphalt cement concrete (ACC) pavements under semitruck, single-axle single-tire grain wagon, single-axle dual-tire grain wagon, tandem and tridem tank wagons were summarized in the interim report. Phase II of this project, presented herein, was to complete the study in terms of how tracked agricultural vehicles relate to the reference 20,000-pound single-axle semi-truck. In this report the response of these two pavements under a tracked grain wagon is documented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 1987, 1.5 km (0.935 mi.) of Spruce Hill Drive in Bettendorf, Iowa was reconstructed. It is an arteriel street with commercial usage on both termini with single family residential dwellings along most of the project. A portland cement concrete (PCC) pavement design was selected, but a 14 day curing period would have been an undue hardship on the residents and commercial businesses. An Iowa DOT Class F fast track concrete was used so the roadway could be used in 7 to 10 days. The Class F concrete with fly ash was relatively sticky and exhibited early stiffening problems and substantial difficulty in obtaining the target entrained air content of 6.5%. These problems were never completely resolved on the project. Annual visual field reviews were conducted through 1996. In November 1991, severe premature distress was identified on the westbound two lanes of the full width replacement. The most deteriorated section in a sag vertical, 152 m (500 ft.) of the westbound roadway, was replaced in 1996. Premature distress has been identified on a dozen other conventional PCC Iowa pavements constructed between 1983 and 1989, so the deterioration may not be related to the fact that it was fast track pavement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The AASHO specifications for highway bridges require that in designing a bridge, the live load must be multiplied by an impact factor for which a formula is given, dependent only upon the length of the bridge. This formula is a result of August Wohler's tests on fatigue in metals, in which he determined that metals which are subjected to large alternating loads will ultimately fail at lower stresses than those which are subjected only to continuous static loads. It is felt by some investigators that this present impact factor is not realistic, and it is suggested that a consideration of the increased stress due to vibrations caused by vehicles traversing the span would result in a more realistic impact factor than now exists. Since the current highway program requires a large number of bridges to be built, the need for data on dynamic behavior of bridges is apparent. Much excellent material has already been gathered on the subject, but many questions remain unanswered. This work is designed to investigate further a specific corner of that subject, and it is hoped that some useful light may be shed on the subject. Specifically this study hopes to correlate, by experiment on a small scale test bridge, the upper limits of impact utilizing a stationary, oscillating load to represent axle loads moving past a given point. The experiments were performed on a small scale bridge which is located in the basement of the Iowa Engineering Experiment Station. The bridge is a 25 foot simply supported span, 10 feet wide, supported by four beams with a composite concrete slab. It is assumed that the magnitude of the predominant forcing function is the same as the magnitude of the dynamic force produced by a smoothly rolling load, which has a frequency determined by the passage of axles. The frequency of passage of axles is defined as the speed of the vehicle divided by the axle spacing. Factors affecting the response of the bridge to this forcing function are the bridge stiffness and mass, which determine the natural frequency, and the effects of solid damping due to internal structural energy dissipation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pavements have been overlaid with thin bonded portland cement concrete (PCC) for several years. These projects have had traffic detoured for a period of 5-10 days. These detours are unacceptable to the traveling public and result in severe criticism. The use of thin bonded fast track overlay was promoted to allow a thin bonded PCC overlay with minimal disruption of local traffic. This project demonstrated the concept of using one lane of the roadway to maintain traffic while the overlay was placed on the other and then with the rapid strength gain of the fast track concrete, the construction and local traffic is maintained on the newly placed, thin bonded overlay. The goals of this project were: 1. Traffic usage immediately after placement and finishing. 2. Reduce traffic disruption on a single lane to less than 5 hours. 3. Reduce traffic disruption on a given section of two-lane roadway to less than 2 days. 4. The procedure must be economically viable and competitive with existing alternatives. 5. Design life for new construction equivalent to or in excess of conventional pavements. 6. A 20 year minimum design life for rehabilitated pavements.